
Detecting and Rectifying Noisy Labels: Similarity-based Methods

Huu-Tien Dang† Nguyen Duc-Thang∗ Hoang Thanh-Tung♢ Naoya Inoue†‡
†JAIST ∗FPT Software AI Center ♢Vietnam National University ‡RIKEN

{s2310417, naoya-i}@jaist.ac.jp

Abstract

Label noise in datasets could damage the per-001
formance of neural net training. As the size of002
modern deep networks grows, there is a grow-003
ing demand for automated tools for detecting004
such errors. In this paper, we propose model-005
agnostic error detection and rectification meth-006
ods utilizing the penultimate feature from the007
trained neural network. Our idea is based on008
an observation that the similarity of penulti-009
mate features is higher for within-class data010
points than that of other class data points, mak-011
ing the probability of label occurrence within012
a tight-similar cluster, informative to detect013
and rectify errors. Extensive experiments show014
our method not only demonstrates high per-015
formances across various noises but also auto-016
matically rectifies these errors to improve the017
quality of datasets and model generalization.018

1 Introduction019

While the majority of knowledge in AI systems is020

learned through unsupervised learning, supervised021

learning is an indispensable step in building strong022

AI systems (c.f. the LeCun’s cake). For Large023

Language Models (LLMs) such as GPTs (Brown024

et al., 2020), LLaMA (Touvron et al., 2023a,b),025

and Gemini (Team et al., 2023), supervised learn-026

ing accounts for only a small fraction of the total027

computation budget but has a significant impact028

on the models’ performance. Recent research (e.g.029

Zhou et al., 2023; Gunasekar et al., 2023) finds that030

high quality training data significantly improves031

performance while reducing the training cost by032

orders of magnitude. The need for automated tools033

for improving the quality of supervised learning034

data is rising as datasets and models are getting035

larger at an unprecedented speed.036

Real world datasets contain a notable amount of037

errors (Beyer et al., 2020; Northcutt et al., 2021b).038

Previous works (Dau et al., 2022; Nguyen-Duc039

et al., 2023) showed that removing errors from the040

training set improves the performance of AI models 041

trained on that dataset. Automatic error rectifica- 042

tion, however, is an underexplored topic. In this 043

paper, we present a feature based approach for error 044

detection and rectification in large scale datasets. 045

We theoretically show that the similarity between 046

the penultimate feature of a mislabeled data point 047

and its true class data points is larger than that for 048

data points from other classes (Sec. 3.1). Inspired 049

by this observation, we develop simple yet effective 050

similarity-based methods for detecting and rectify- 051

ing label errors (Sec. 3.2). Extensive experiments 052

demonstrate the superiorities of our methods across 053

various settings (Sec. 4.2). Furthermore, our meth- 054

ods are posthoc and model-agnostic i.e. they can 055

be applied to any deep neural network (DNN) ar- 056

chitectures without the need for retraining. 057

2 Background and related work 058

Notation. Let z = (x,y) be a data point, where 059

x ∈ X is an input and y ∈ Y is an output. Let D = 060

{z(i)}ni=1 be a N -class noisy training dataset of n 061

data points. Let f : X 7→ Y be a deep model pa- 062

rameterized by θ; θ̂ = argminθ
1
n

∑n
i=1 ℓ(z

(i), θ) 063

are optimal parameters of f measured on D, where 064

ℓ : Y×Y 7→ R+ be the loss function. In this paper, 065

gθ̂(z
(i)) = ∇θℓ(z

(i), θ̂) is denoted as the gradient 066

of the loss at θ̂ with respect to (w.r.t) θ. 067

Confident-based Error Detection Methods. 068

Confident-based methods are based on the no- 069

tion of confident learning (Northcutt et al., 2021a) 070

that deriving label quality measurements by us- 071

ing predicted probability distribution (Wang and 072

Mueller, 2022; Kuan and Mueller, 2022; Thya- 073

garajan et al., 2022). Low confidence serves as 074

a heuristic indicating the likelihood of a label 075

noise. Given a data point z with output label 076

y = (y1, ..., yk, ...yN), the model’s predicted prob- 077

abilities is p = (p1, ..., pk, ..., pN) over N classes. 078

Northcutt et al. (2021a) proposed three label quality 079

1

scoring methods:080

(1) Self-Confidence (SC) refers to the estimated081

probability that the input x belongs to the class082

associated with its given label k: SC(z,p) = pyk ,083

for k ∈ {1, 2, ..., N}.084

(2) Normalized-Margin (NM) is the quantified085

difference between the model’s estimated proba-086

bility of the given label and the probability of the087

most likely class: NM(z,p) = pyk − pyj∗ , for088

j∗ = argmaxj ̸=k∈{1,2,...,N} pyj089

(3) Confidence-Weighted Entropy (CE) is the090

ratio of SC score and the normalized en-091

tropy: CE(z,p) =
pyk

HN (p) , where HN (p) =092

− 1
logN

N∑
n=1

pn log(pn).093

Gradient-based Error Detection Methods.094

Koh and Liang (2017) use Influence Function (IF)—095

a concept from robust statistic (Hampel, 1974)—096

for measuring the influence of a training data point097

to weights of a DNN. Dau et al. (2022) proposed a098

way to adapt IF and its variants i.e. Gradient Dot099

Product (GD; Charpiat et al. (2019a)), Gradient100

Cosine (GC; Charpiat et al. (2019a)), and Tracing101

Gradient Decent (TracIn; Pruthi et al. (2020)), for102

identifying erroneous in large-scale source code103

datasets. The idea is the gradients of error data104

points exhibit significantly large magnitudes and105

are opposite in direction to the gradients of normal106

data points. The algorithm computes the influence107

score of each data point in the noisy dataset with108

data points in a reference set. A more negative109

influence score means is more likely to be an error.110

Nguyen-Duc et al. (2023) use class information111

to improve the performance and stability of these112

gradient methods.113

(1) IF(z(i), z(j)) = − 1
ngθ̂(z

(i))⊤H−1

θ̂
gθ̂(z

(j)),114

(2) GD(z(i), z(j)) = ⟨gθ̂(z
(i)),gθ̂(z

(j))⟩,115

(3) GC(z(i), z(j)) = cos(gθ̂(z
(i)),gθ̂(z

(j))),116

(4) TracIn(z(i), z(j)) =
∑T

t=1 ηtGD(z(i), z(j)),117

where Hθ̂ is the hessian matrix, T is the number of118

epochs, and ηt is the learning rate at epoch t.119

Other Error Detection Methods. The rule-120

based approach (Chu et al., 2013) and statistics-121

based approach (Huang and He, 2018) are com-122

monly used for structured data such as tabular data.123

Krishnan et al. (2016) combines active learning124

and convex models to detect errors on small clas-125

sification datasets. These methods are not suitable126

for deep learning, as they assume convexity in the127

model, and the rules in many large scale datasets 128

are not easy to find and describe. 129

3 Method 130

3.1 Observation 131

We design experiments to randomly corrupt and 132

inject noise into datasets. We then train a deep 133

network using gradient descent on these altered 134

datasets to measure how noisy data points behave 135

on other data points. As an illustrative example 136

in Fig. 1, we observed that the similarity between 137

the mislabeled data points and their true class data 138

point penultimate-layer representations is often 139

higher than other class data points. We find that

(a) Cosine similarity (b) Dot product

Figure 1: Distribution of (a) Cosine similarity and (b)
Dot product over IMDB (Maas et al., 2011) with 10%
noise. Blue bars represent the similarity between mis-
labeled data points and their true class data points, red
bars represent the similarity between mislabeled data
points and other class data points. Features are obtained
from a trained BERT model.

140
this phenomenon persists across varying percent- 141

ages of noises. To complement our observation, we 142

provide a theoretical explanation in Appendix. B. 143

3.2 Algorithm 144

Our algorithm is detailed in Algorithm 1. It re- 145

quires a small auxiliary dataset Daux, a similarity 146

measure σ(·, ·). We denote ϕ(i) and ϕ(j) be the 147

penultimate feature representations of z(i) and z(j) 148

obtained from the trained model fθ̂ respectively. 149

We employ two primary similarity measures: Dot 150

product (DOT =
〈
ϕ(i), ϕ(j)

〉
) and Cosine similar- 151

ity (COS =
⟨ϕ(i),ϕ(j)⟩

||ϕ(i)||||ϕ(j)||). We denote S(Daux, z
(i)) 152

as k most similar to z(i) in Daux. 153

Error Detection. Given a noisy dataset D, for 154

each data point z(i) ∈ D with label y(i), our al- 155

gorithm finds S(Daux, z
(i)) such that every data 156

point in D but not in S(Daux, z
(i)) is at most simi- 157

lar to z(i) as the least similar point in S(Daux, z
(i)) 158

(line 6). We define a scoring function that return 159

2

Algorithm 1 Similarity-based Error Detection and
Rectification
Require:

1: D =
{
z(i)
}n
i=1

: a noisy dataset
2: Daux =

{
z(j)
}m
j=1

: an auxiliary dataset.
3: σ(·, ·): a similarity measure.
4: k: number of most similar data points.

Ensure: noisy data points in D are rectified.
/* Error Detection */

5: for z(i) ∈ D do
6: S(Daux, z

(i)) = {z(j) ∈ Daux}
s.t. |S(Daux, z

(i))| = k, and

σ(z(i), z(j)) ≥ max
z′(i)∈D\S(Daux,z(i))

σ(z(i), z′(i))

7: s(i) = 1
k

∑
z(j)∈S(Daux,z(i))

I(y(j) = y(i))
8: end for
9: D↑ = sort(D, key = s, ascending = True)

/* Error Rectification*/
10: for z(i) ∈ D↑

:p do
11: z(i) =

(
x(i), MODE(S(Daux, z

(i)))
)

12: return D

s(i)—the probability of occurrence of label y(i) in160

S(Daux, z
(i)) (line 7). The indicator I(·) returns 1161

if the condition holds. A lower s is, more likely a la-162

bel error. We sort the data points in D in ascending163

order of s and obtain the sorted D↑ (line 9).164

Error Rectification. We select the first p% sam-165

ples of ranked set D↑ denoted as D↑
:p and define166

a class decision rule MODE(·) that selects the la-167

bel in S(Daux, z
(i)) has the highest probability and168

greater than threshold τ . Otherwise, the label of169

z(i) remains unchanged (line 11).170

4 Experiment171

4.1 Experiment Setting172

Dataset and Model. We evaluate our method on173

two common benchmarks: Sentiment Analysis on174

IMDB (Maas et al., 2011) and Short Text Classi-175

fication on Snippets (Phan et al., 2008). We use176

BERT (Devlin et al., 2019) as the standard model177

for all settings.178

Modeling Realistic Noise. We construct three179

realistic, human-originated types of noise: (1) Uni-180

form noise: we randomly select data points and181

change the label to a different class. (2) Systematic182

ambiguity noise: we establish a rule h, which maps183

data points in a specific class to another fixed one.184

This means that the labels of selected instances in 185

class i are flipped to h(i). To ensure distinctive- 186

ness, the mapping function h adheres to the con- 187

dition h(i) ̸= h(j)∀i, j = {1, ..., N}, and i ̸= j. 188

This noise models the situations where inputs from 189

multiple annotators are often aggregated, the re- 190

sulting differences in annotations can serve as a 191

model of systematic noise derived from human dis- 192

agreements. (3) Concentrated noise: we select 193

data points that are densely clustered and change 194

their labels to target labels. We simulate scenarios 195

where the datasets are poisoned by malicious to 196

evaluate the sanitization ability of methods against 197

data poisoning attacks. 198

Setting. For each dataset, we construct groups 199

of various sizes of noisy samples by corrupting 200

the label of p% of the original training data. We 201

construct the auxiliary dataset Daux by randomly 202

selecting m samples from the validation set. We 203

fine-tune BERT on noisy dataset D and select the 204

best checkpoint measure on the validation set. We 205

select top t% ranked samples in D↑
:p and use error 206

detection accuracy for evaluation. After rectify- 207

ing/removing ranked samples (potentially noisy 208

samples), we re-train the model and report the test 209

accuracy and error reduction rate. Details of the 210

dataset, model, and implementations are in Ap- 211

pendix. A. 212

4.2 Main Result and Analysis 213

Error detection accuracy. (1) Fig. 2 shows the 214

error detection accuracy of methods with three 215

types of noise with different percentages. As a re- 216

sult, when t increases the performance of gradient- 217

based methods drastically decreases. This pattern 218

is observed in all three types of noise across differ- 219

ent percentages and in both Snippets (Fig. 4) and 220

IMDB (Fig. 5). This result shows that the gradient- 221

based methods are unstable and less inconsistent. 222

(2) Confident-based methods are precise with uni- 223

form noises and systematic ambiguity noise yet 224

struggle with concentrated noise (Fig. 2c). (3) Sim- 225

Cos and Sim-Dot have high detection accuracy and 226

slightly decrease when t increases with difference 227

noise. This confirmed that the Similarity-based 228

methods are effective and more robust to ambiguity 229

and concentrated noises than gradient-/confident- 230

based methods. (4) We observe that Sim-Dot often 231

has low detection accuracy on IMDB (Fig. 5). We 232

theoretically proved that for classification datasets 233

with N classes, the similarity of within-class data 234

3

(a) Random noise p = 5% (b) Systematic ambiguity noise p = 10% (c) Concentrated noise p = 20%

Figure 2: Error detection accuracy of methods measure on Snippets. The x-axis in the figures presents the change of
t from 10 → 100%.

Table 1: Test accuracy after remove/rectify potential noise samples on Snippets with 20% noise. The best and
runner-up are marked.

Method Random noise Ambiguity noise Concentrated noise

Removed Rectified Removed Rectified Removed Rectified

Acc. (under noise) 88.64 (+0.00) — 82.50 (+0.00) — 79.38 (+0.00) —

Confident-W. Entropy 83.02 (-5.62) — 84.38 (+1.88) — 77.50 (-1.88) —
Normalize-Margin 87.19 (-1.45) — 87.01 (+4.51) — 77.89 (-1.49) —
Self-Confidence 86.05 (-2.59) — 87.36 (+4.86) — 78.02 (-1.36) —
Influence Function 83.24 (-5.40) — 81.71 (-0.79) — 79.51 (+0.13) —
Gradient-Cosine 73.81 (-14.83) — 83.33 (+0.83) — 82.23 (+2.85) —
Gradient-Dot 86.53 (-2.11) — 82.01 (-0.49) — 78.68 (-0.70) —
TracIn 85.48 (-3.16) — 81.71 (-0.79) — 76.67 (-2.71) —

Sim-Cos 89.43 (+0.79) 87.85 (-0.79) 85.00 (+2.50) 83.73 (+1.23) 81.53 (+2.15) 83.38 (+4.00)
Sim-Dot 86.71 (-1.93) 87.32 (-1.32) 82.98 (+0.48) 83.95 (+1.45) 81.53 (+2.15) 81.97 (+2.59)

points is approximately N − 1 times larger than235

other class data points. For IMDB where N = 2,236

this fraction becomes approximately 1. That ex-237

plains why Sim-Dot does not work well on IMDB.238

Mathematical details are in Appendix. B. (5) Sim-239

Cos, consistently outperforms Sim-Dot by a large240

margin for all settings. We explain from the stand-241

point of feature normalization. By definition, Co-242

sine similarity can be seen as the normalized Dot243

product. In Fig. 4 (b), we empirically show that244

the noisy samples have L2-norm smaller than nor-245

mal samples. Therefore, when dividing the feature246

of data points by its norm, the similarity between247

noisy and normal data points tends to be larger,248

leading to a more distinct distribution of similari-249

ties.250

Improving datasets and model generalization.251

Tab.1 shows a significant improvement in the test252

accuracy when removing/rectifying concentrated253

noise and systematic ambiguity noise. Neverthe-254

less, a counter-intuitive observation regarding ran-255

dom noise shows that removing/rectifying noise 256

reduces the generalization of models, even when 257

detection accuracy is high. We posit that deep mod- 258

els are robust to massive random noise (Rolnick 259

et al., 2017), then as the training process, the model 260

also memorizes the noise, approaches the optimum, 261

and the gradient of noise becomes smaller. The ef- 262

fect of noise, therefore, also decreases as the model 263

converges. When removing noise, the model de- 264

grades the feature representation of noise samples 265

and loses the generalization to unseen samples. 266

5 Conclusion 267

We introduce similarity-based algorithms for de- 268

tecting and rectifying errors on large-scale datasets. 269

We theoretically show that the similarity between 270

the penultimate feature’s data points is useful for 271

detecting errors. Experiment results demonstrated 272

the superior performance of our methods, and their 273

capability to improve datasets quality and model 274

generalization. 275

4

Limitations276

We discuss the limitations of similarity-based meth-277

ods: (1) The optimal detection accuracy of Sim-278

Cos and Sim-Dot unfortunately based on empirical279

validation, and depends on the choice of k and Daux280

and also with different datasets and model architec-281

tures. (2) The generalization of models under the282

removal or rectification of noise remains uncertain,283

due to the limited exploration of datasets.284

Ethics Statement285

We consider only the public datasets and create286

artificial noises for evaluation. We do not pose any287

concern about the quality of the original datasets.288

Acknowledgements289

We thank Thu Tran and the anonymous reviewers290

for their constructive feedback.291

References292

Naman Agarwal, Brian Bullins, and Elad Hazan. 2017.293
Second-order stochastic optimization for machine294
learning in linear time. The Journal of Machine295
Learning Research, 18(1):4148–4187.296

Lucas Beyer, Olivier J. Hénaff, Alexander Kolesnikov,297
Xiaohua Zhai, and Aäron van den Oord. 2020. Are298
we done with imagenet? CoRR, abs/2006.07159.299

Tom Brown, Benjamin Mann, Nick Ryder, Melanie300
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind301
Neelakantan, Pranav Shyam, Girish Sastry, Amanda302
Askell, et al. 2020. Language models are few-shot303
learners. Advances in neural information processing304
systems, 33:1877–1901.305

Guillaume Charpiat, Nicolas Girard, Loris Felardos,306
and Yuliya Tarabalka. 2019a. Input similarity from307
the neural network perspective. Advances in Neural308
Information Processing Systems, 32.309

Guillaume Charpiat, Nicolas Girard, Loris Felardos,310
and Yuliya Tarabalka. 2019b. Input similarity from311
the neural network perspective. Advances in Neural312
Information Processing Systems, 32.313

Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013. Holistic314
data cleaning: Putting violations into context. In315
2013 IEEE 29th International Conference on Data316
Engineering (ICDE), pages 458–469.317

Anh TV Dau, Nghi DQ Bui, Thang Nguyen-Duc, and318
Hoang Thanh-Tung. 2022. Towards using data-319
influence methods to detect noisy samples in source320
code corpora. In 37th IEEE/ACM International Con-321
ference on Automated Software Engineering, pages322
1–3.323

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 324
Kristina Toutanova. 2019. BERT: Pre-training of 325
deep bidirectional transformers for language under- 326
standing. In Proceedings of the 2019 Conference of 327
the North American Chapter of the Association for 328
Computational Linguistics: Human Language Tech- 329
nologies, Volume 1 (Long and Short Papers), pages 330
4171–4186, Minneapolis, Minnesota. Association for 331
Computational Linguistics. 332

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio 333
César Teodoro Mendes, Allie Del Giorno, Sivakanth 334
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo 335
de Rosa, Olli Saarikivi, et al. 2023. Textbooks are all 336
you need. arXiv preprint arXiv:2306.11644. 337

Frank R. Hampel. 1974. The influence curve and its 338
role in robust estimation. Journal of the American 339
Statistical Association, 69(346):383–393. 340

Kazuaki Hanawa, Sho Yokoi, Satoshi Hara, and Ken- 341
taro Inui. 2021. Evaluation of similarity-based ex- 342
planations. In International Conference on Learning 343
Representations. 344

Zhipeng Huang and Yeye He. 2018. Auto-detect: Data- 345
driven error detection in tables. In Proceedings of 346
the 2018 International Conference on Management 347
of Data, pages 1377–1392. 348

Pang Wei Koh and Percy Liang. 2017. Understanding 349
black-box predictions via influence functions. In 350
International conference on machine learning, pages 351
1885–1894. PMLR. 352

Sanjay Krishnan, Jiannan Wang, Eugene Wu, Michael J. 353
Franklin, and Ken Goldberg. 2016. Activeclean: In- 354
teractive data cleaning for statistical modeling. Proc. 355
VLDB Endow., 9(12):948–959. 356

Johnson Kuan and Jonas Mueller. 2022. Model-agnostic 357
label quality scoring to detect real-world label errors. 358
In ICML DataPerf Workshop. 359

Ilya Loshchilov and Frank Hutter. 2019. Decoupled 360
weight decay regularization. In International Confer- 361
ence on Learning Representations. 362

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, 363
Dan Huang, Andrew Y. Ng, and Christopher Potts. 364
2011. Learning word vectors for sentiment analysis. 365
In Proceedings of the 49th Annual Meeting of the 366
Association for Computational Linguistics: Human 367
Language Technologies, pages 142–150, Portland, 368
Oregon, USA. Association for Computational Lin- 369
guistics. 370

Thang Nguyen-Duc, Hoang Thanh-Tung, Quan Hung 371
Tran, Dang Huu-Tien, Hieu Nguyen, Anh T. V. Dau, 372
and Nghi Bui. 2023. Class based influence functions 373
for error detection. In Proceedings of the 61st Annual 374
Meeting of the Association for Computational Lin- 375
guistics (Volume 2: Short Papers), pages 1204–1218, 376
Toronto, Canada. Association for Computational Lin- 377
guistics. 378

5

http://arxiv.org/abs/2006.07159
http://arxiv.org/abs/2006.07159
http://arxiv.org/abs/2006.07159
https://doi.org/10.1109/ICDE.2013.6544847
https://doi.org/10.1109/ICDE.2013.6544847
https://doi.org/10.1109/ICDE.2013.6544847
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://www.jstor.org/stable/2285666
http://www.jstor.org/stable/2285666
http://www.jstor.org/stable/2285666
https://openreview.net/forum?id=9uvhpyQwzM_
https://openreview.net/forum?id=9uvhpyQwzM_
https://openreview.net/forum?id=9uvhpyQwzM_
https://doi.org/10.14778/2994509.2994514
https://doi.org/10.14778/2994509.2994514
https://doi.org/10.14778/2994509.2994514
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://aclanthology.org/P11-1015
https://doi.org/10.18653/v1/2023.acl-short.104
https://doi.org/10.18653/v1/2023.acl-short.104
https://doi.org/10.18653/v1/2023.acl-short.104

Curtis Northcutt, Lu Jiang, and Isaac Chuang. 2021a.379
Confident learning: Estimating uncertainty in dataset380
labels. Journal of Artificial Intelligence Research,381
70:1373–1411.382

Curtis G Northcutt, Anish Athalye, and Jonas Mueller.383
2021b. Pervasive label errors in test sets destabilize384
machine learning benchmarks. In Thirty-fifth Con-385
ference on Neural Information Processing Systems386
Datasets and Benchmarks Track (Round 1).387

Pouya Pezeshkpour, Sarthak Jain, Byron Wallace, and388
Sameer Singh. 2021. An empirical comparison of in-389
stance attribution methods for NLP. In Proceedings390
of the 2021 Conference of the North American Chap-391
ter of the Association for Computational Linguistics:392
Human Language Technologies, pages 967–975, On-393
line. Association for Computational Linguistics.394

Xuan-Hieu Phan, Le-Minh Nguyen, and Susumu395
Horiguchi. 2008. Learning to classify short and396
sparse text & web with hidden topics from large-397
scale data collections. In Proceedings of the 17th398
international conference on World Wide Web, pages399
91–100.400

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund401
Sundararajan. 2020. Estimating training data influ-402
ence by tracing gradient descent. Advances in Neural403
Information Processing Systems, 33:19920–19930.404

David Rolnick, Andreas Veit, Serge Belongie, and Nir405
Shavit. 2017. Deep learning is robust to massive406
label noise. arXiv preprint arXiv:1705.10694.407

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,408
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.409
Dropout: A simple way to prevent neural networks410
from overfitting. Journal of Machine Learning Re-411
search, 15(56):1929–1958.412

Gemini Team, Rohan Anil, Sebastian Borgeaud,413
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,414
Radu Soricut, Johan Schalkwyk, Andrew M Dai,415
Anja Hauth, et al. 2023. Gemini: a family of416
highly capable multimodal models. arXiv preprint417
arXiv:2312.11805.418

Aditya Thyagarajan, Elías Snorrason, Curtis Northcutt,419
and Jonas Mueller. 2022. Identifying incorrect an-420
notations in multi-label classification data. arXiv421
preprint arXiv:2211.13895.422

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier423
Martinet, Marie-Anne Lachaux, Timothée Lacroix,424
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal425
Azhar, et al. 2023a. Llama: Open and effi-426
cient foundation language models. arXiv preprint427
arXiv:2302.13971.428

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-429
bert, Amjad Almahairi, Yasmine Babaei, Nikolay430
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti431
Bhosale, et al. 2023b. Llama 2: Open founda-432
tion and fine-tuned chat models. arXiv preprint433
arXiv:2307.09288.434

Wei-Chen Wang and Jonas Mueller. 2022. Detecting la- 435
bel errors in token classification data. arXiv preprint 436
arXiv:2210.03920. 437

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao 438
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu, 439
Lili Yu, et al. 2023. Lima: Less is more for alignment. 440
arXiv preprint arXiv:2305.11206. 441

A Implementation detail 442

A.1 Dataset and Model 443

Snippets (Phan et al., 2008) is an open dataset 444

of web search snippets retrieved from Google 445

Search with 8 domains including Business, Com- 446

puters, Culture-Arts-Entertainment, Education- 447

Science, Engineering, Health, Politics-Society, 448

and Sports. The training data and testing 449

data include 10, 060 and 2, 280 snippets respec- 450

tively. For validation purposes, we randomly 451

split original training data into train/valid with 452

the ratio of 8048/2012. The dataset can be 453

found at http://jwebpro.sourceforge. 454

net/data-web-snippets.tar.gz. 455

IMDB (Maas et al., 2011) is the most com- 456

mon benchmark for Sentiment Analysis task. 457

IMDB includes 50000 reviews from the Inter- 458

net Movie Database website with original 25000 459

negative and 25000 positive reviews. For val- 460

idation purposes, we randomly split into train- 461

ing, validation, and test sets of sizes 15000, 462

5000, and 25000. The IMDB dataset can 463

be found at https://ai.stanford.edu/ 464

~amaas/data/sentiment/ 465

BERT (Devlin et al., 2019) stands for Bidirec- 466

tional Encoder Representations from Transformers. 467

BERT is one of the most standard used pre-trained 468

model for language understanding tasks. In all 469

settings, we use BERT base uncased version. 470

A.2 Experiment detail 471

BERT was trained with AdamW (Loshchilov and 472

Hutter, 2019) with learning rate η = 5e − 5, 473

momentum β = (0.9, 0.999), cross entropy loss, 474

batch-size of 16 with 15 epochs. For regulariza- 475

tion, we use Dropout (Srivastava et al., 2014) of 476

0.2. We choose p = {5%, 10%, 20%}, m = 477

1000, k = {1, 2, 5, 10, 20, 50, 100, 200}, t = 478

{10%, 20%, ..., 100%}, and τ = 0.8. We compute 479

the IF score for BERT with the last layer gradient as 480

previous works (Pezeshkpour et al., 2021; Hanawa 481

et al., 2021) and use LiSSA (Agarwal et al., 2017) 482

to approximate the Hessian. For TracIn method, we 483

6

https://openreview.net/forum?id=XccDXrDNLek
https://openreview.net/forum?id=XccDXrDNLek
https://openreview.net/forum?id=XccDXrDNLek
https://doi.org/10.18653/v1/2021.naacl-main.75
https://doi.org/10.18653/v1/2021.naacl-main.75
https://doi.org/10.18653/v1/2021.naacl-main.75
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://jwebpro.sourceforge.net/data-web-snippets.tar.gz
http://jwebpro.sourceforge.net/data-web-snippets.tar.gz
http://jwebpro.sourceforge.net/data-web-snippets.tar.gz
https://ai.stanford.edu/~amaas/data/sentiment/
https://ai.stanford.edu/~amaas/data/sentiment/
https://ai.stanford.edu/~amaas/data/sentiment/

calculate the influence score from the first epoch484

to the best epoch. We run experiments on 4 seeds485

= {16, 32, 64, 128} and aggregate the results by486

taking the mean of these 4 seeds. A Nvidia RTX487

GeForce 3090 Ti was used to run experiments. Our488

implementation was attached to the supplementary489

materials.490

B Theoretical Analysis491

We consider a deep network received input x ∈ Rd,492

where d is the input dimension. Let δ be the soft-493

max activation function, b ∈ RN be the bias.494

Given an output function ϕW parameterized by495

W ∈ RN×d. For two inputs x(i) and x(j) we have496

two output vectors ϕW (x(i)) and ϕW (x(j)) respec-497

tively. As seen by a deep network, we can mea-498

sure the influence between x(i) and x(j) by quan-499

tifying how much ϕW (x(i)) change would change500

ϕW (x(j)) as well. If x(i) and x(j) have high sim-501

ilarity, then x(i) have high influence on x(j) and502

changing ϕW (x(i)) have large effect on ϕW (x(j)).503

Otherwise, if they have low similarity, then x(i)504

have low influence on x(j) and changing ϕW (x(i))505

have small effect on ϕW (x(j)). To measure the506

similarity between data points, we employ a sym-507

metric kernel proposed by Charpiat et al. (2019b):508

The Inner Product509

K(x(i),x(j)) =
〈
∇WϕW (x(i)),∇WϕW (x(j))

〉
,

(1)

510

We choice ϕ is the Cross Entropy between softmax511

activation output ŷ = δ(Wx + b) and true dis-512

tribution y. We have ϕW (x) = ℓ(ŷ,y;W). For513

simplicity, we remove the bias term. Let denote514

u = Wx and ℓ(ŷ,y) = ℓ(ŷ,y;W). Using the515

chain rule:516

∇W ℓ(ŷ,y) = vec
(
∂ℓ(ŷ,y)

∂W

)
517

= vec
(
∂ℓ(ŷ,y)

∂u

∂u

∂W

)
518

= ∇uℓ(ŷ,y)x
⊤, (2)519

where vec
(
∂ℓ(ŷ,y)
∂W

)
is the vectorization of the520

derivative of the loss ℓ with respect to W . The521

partial ∂ℓ(ŷ,y)
∂u is522

∂ℓ(ŷ,y)

∂u
=

∂ℓ(ŷ,y)

∂ŷ

∂ŷ

∂u
(3)523

The first term on the right hand side of Eqn. 3 is524

partial derivatives of the loss w.r.t the predicted525

output ŷ. Regarding to the fact: y is the one-hot 526

vector present label k has element yk = 1 and 527

yi = 0 if i ̸= k. We have: 528

∂ℓ(ŷ,y)

∂ŷ
=
[
∂ℓ(ŷ,y)
∂ŷ1

· · · ∂ℓ(ŷ,y)∂ŷk
· · · ∂ℓ(ŷ,y)∂ŷN

]
529

=
[
0 · · · 1

ŷk
· · · 0

]
(4) 530

The second term is the matrix comprises partial 531

derivatives of the predicted output ŷ w.r.t u. Re- 532

garding to the fact: 533

∂ŷ

∂u
=



∂ŷ1
∂u1

∂ŷ1
∂u2

· · · ∂ŷ1
∂uN

...
...

...
...

∂ŷk
∂u1

∂ŷk
∂u2

· · · ∂ŷk
∂uN

...
...

...
...

∂ŷN
∂u1

∂ŷN
∂u2

· · · ∂ŷN
∂uN


(5) 534

Substitute Eqn. 5 and Eqn. 4 into Eqn. 3, we get 535

∂ℓ(ŷ,y)

∂u
= 536[

∂ℓ(ŷ,y)
∂ŷk

∂ŷk
∂u1

· · · ∂ℓ(ŷ,y)
∂ŷk

∂ŷk
∂uk

· · · ∂ℓ(ŷ,y)
∂ŷk

∂ŷk
∂uN

]
(6)

537

Given a softmax activation function δ for class 538

k: Case 1: i = k, we compute the derivative of 539

softmax output ŷk w.r.t uk: 540

∂ŷk
∂uk

=
∂

∂uk

(
euk∑N
i=1 e

ui

)
541

=
euk

(∑N
i=1 e

ui

)
− euk · euk(∑N

i=1 e
ui

)2 542

= ŷk(1− ŷk) (7) 543

Case 2: i ̸= k, we compute the derivative of soft- 544

max output ŷk w.r.t ui: 545

∂ŷk
∂ui

=
∂

∂ui

(
euk∑N
i=1 e

ui

)
(8) 546

Using the chain rule, we get: 547

∂ŷk
∂ui

= − euk · eui(∑N
i=1 e

ui

)2 = −ŷkŷi (9) 548

Substitute Eqn. 7 and Eqn. 9 into Eqn. 6, we get a 549

column vector: 550

∇uℓ(ŷ,y) =
[
−ŷ1 · · · 1− ŷk · · · − ŷN

]⊤ (10) 551

7

The inner product kernel in Eqn. 2 become:552

K(x(i),x(j)) =

G(ij)︷ ︸︸ ︷
∇uℓ(ŷ

(i),y(i))⊤∇uℓ(ŷ
(j),y(j))553

· (x(j)⊤x(i)) (11)554

We denote G(ij) as the dot product of two gradients555

of the loss at x(i) and x(j). Suppose input x(i) and556

input x(j) have label k and k′ corresponding. We557

have558

G(ij) =
[
−ŷ

(i)
1 · · · 1− ŷ

(i)
k · · · − ŷ

(i)
N

]


−ŷ
(j)
1
...

1− ŷ
(j)
k′

...
−ŷ

(j)
N


(12)

559

we consider 2 cases:560

If k = k′:561

G
(ij)
k=k′ = ŷ

(i)
1 ŷ

(j)
1 + · · ·+ (1− ŷ

(i)
k)(1− ŷ

(j)
k)562

+ · · ·+ ŷ
(i)
N ŷ

(j)
N563

= (1− ŷ
(i)
k)(1− ŷ

(j)
k) +

N∑
n=1,n̸=k

ŷ(i)n ŷ(j)n

(13)

564

If k ̸= k′:565

G
(ij)
k ̸=k′ = ŷ

(i)
1 ŷ

(j)
1 + · · ·+ (1− ŷ

(i)
k)(−ŷ

(j)
k)+566

(1− ŷ
(j)
k′)(−ŷ

(i)
k′) + · · ·+ ŷ

(i)
N ŷ

(j)
N567

= ŷ
(j)
k (ŷ

(i)
k − 1) + ŷ

(i)
k′ (ŷ

(j)
k′ − 1)568

+
N∑

n=1,n ̸=k,n̸=k′

ŷ(i)n ŷ(j)n (14)569

During the training process, the model is more570

confident about the labels of data points, indicating571

the value of ŷ(i)k and ŷ
(j)
k′ being closer to 1. Assume572

a well-trained model, and ŷ
(i)
k ≈ ŷ

(j)
k′ = α; ŷ(i)n =573

ŷ
(j)
n ≈ ϵ = 1−α

N−1 . (n ̸= k and n ̸= k′). Substitute574

these values into Eqn. 13 and Eqn. 14, we get :575

G
(ij)
k=k′ ≈ (1− α)2 + ϵ2(N − 1) (15)576

G
(ij)
k ̸=k′ ≈ −N(1− α)2

(N − 1)2
= −ϵ2N (16)577

As N become very large with deep learning dataset578

and ϵ small, the magnitude of G(ij)
k ̸=k′ is close to579

0 for k ̸= k′. That means data points in different 580

classes tend to be pushed into different orthogonal 581

sub-spaces. Let’s consider the the magnitude of 582

G
(ij)
k=k′ and G

(ij)
k ̸=k′ , divide |G(ij)

k=k′ | by |G(ij)
k ̸=k′ |, we 583

get: 584

K(ij)
k=k′

K(ij)
k ̸=k′

=
|G(ij)

k=k′ |
|G(ij)

k ̸=k′ |
≈ |(1− α)2 + ϵ2(N − 1)|

| − ϵ2N |
585

≈ ϵ2(N − 1)2 + ϵ2(N − 1)

ϵ2N
586

≈ N − 1 (17) 587

Here, the kernel K(ij)
k=k′ (K(ij)

k ̸=k′) represents the sim- 588

ilarity between x(i) and x(j) when they share the 589

same label (different labels). This explains why 590

mislabeled data points are often more similar to 591

true class data points than data points in other 592

classes. 593

Similarity-based methods do not work well on 594

IMDB (Fig. 5). For the IMDB dataset with N = 595

2, the fraction are approximately 1. Hence, the 596

similarity between data points within the same class 597

and those in the remaining class does not have a 598

significant gap. 599

C Ablation studies 600

C.1 The effect of the size of Daux, the number 601

of k, and τ . 602

The effect of the size of Daux. We change the 603

size of Daux from 100 to 1500, fix k = 100. Tab. 2 604

and Tab. 3 show the change in error detection accu- 605

racy as the size of Daux changes. We observed that: 606

(1) the detection accuracy of the methods increases 607

as the size of Daux increases. This is true for both 608

Snippets and IMDB, Sim-Cos and Sim-Dot, and 609

for all levels of noise {5%, 10%, 20%}. (2) The ac- 610

curacy gains are larger for smaller Daux values. (3) 611

Sim-Cos outperforms Sim-Dot for all noise levels 612

and most Daux values. 613

The effect of k. Tab. 4 and Tab. 5 show that Sim- 614

Cos and Sim-Dot have accuracy increase as k in- 615

creases for all noise levels {5%, 10%, 20%} and 616

for most values of k. The accuracy gains are often 617

larger for smaller values of k. Sim-Cos outper- 618

forms Sim-Dot, especially for larger values of k for 619

all noise levels and most values of k. The impact of 620

noise on detection accuracy with Snippets is gen- 621

erally small, but it increases with k. For Sim-Cos 622

with 20% noise in Tab. 4, the accuracy starts to 623

8

Table 2: The effect of the size of Daux, setting with
Snippets.

Method 5% noise 10% noise 20% noise
Sim-Cos@100 16.91 22.63 31.69
Sim-Cos@200 51.99 40.67 65.25
Sim-Cos@300 57.46 56.96 80.23
Sim-Cos@400 60.45 72.38 86.45
Sim-Cos@500 75.37 78.60 86.88
Sim-Cos@600 77.36 78.60 89.93
Sim-Cos@700 82.58 78.48 93.10
Sim-Cos@800 85.07 78.60 92.91
Sim-Cos@900 86.07 79.72 93.16
Sim-Cos@1000 86.56 80.01 93.28
Sim-Cos@1500 88.06 80.97 94.28
Sim-Dot@100 16.91 22.63 31.69
Sim-Dot@200 51.74 40.92 64.26
Sim-Dot@300 57.96 56.59 79.42
Sim-Dot@400 61.19 70.64 86.82
Sim-Dot@500 74.62 78.23 87.01
Sim-Dot@600 76.36 78.10 88.87
Sim-Dot@700 81.34 77.36 92.91
Sim-Dot@800 82.83 77.36 92.54
Sim-Dot@900 83.83 78.10 92.17
Sim-Dot@1000 84.08 78.73 92.41
Sim-Dot@1500 85.32 80.34 93.78

Table 3: The effect of the size of Daux on detection
performance with IMDB.

Method 5% noise 10% noise 20% noise
Sim-Cos@100 6.40 8.55 20.10
Sim-Cos@200 58.10 74.00 78.55
Sim-Cos@300 60.30 75.60 78.55
Sim-Cos@400 60.10 75.65 78.55
Sim-Cos@500 60.20 75.55 78.55
Sim-Cos@600 59.90 75.70 78.52
Sim-Cos@700 60.20 75.55 78.45
Sim-Cos@800 60.10 75.60 78.47
Sim-Cos@900 60.20 75.60 78.42
Sim-Cos@1000 59.90 75.50 78.52
Sim-Cos@1500 60.10 75.55 78.50
Sim-Dot@100 6.40 8.55 20.10
Sim-Dot@200 57.80 66.65 77.72
Sim-Dot@300 58.00 65.70 77.80
Sim-Dot@400 58.10 68.20 78.47
Sim-Dot@500 57.90 67.10 77.95
Sim-Dot@600 58.00 73.65 78.35
Sim-Dot@700 58.50 69.45 78.52
Sim-Dot@800 57.90 65.70 77.87
Sim-Dot@900 58.20 68.65 77.47
Sim-Dot@1000 59.90 68.60 77.55
Sim-Dot@1500 57.90 68.05 78.10

decrease after k = 20. This suggests that using624

larger k can harm the accuracy when the data is625

very noisy. For Sim-Dot with 10% and 20% noise626

in Tab. 4, the accuracy changes are less consistent627

across different values of k. This suggests that628

Sim-Dot may be more sensitive to the choice of k.629

Table 4: Error detection accuracy of Sim-Cos and Sim-
Dot changes as k changes with Snippets.

Method 5% noise 10% noise 20% noise
Sim-Cos@k=1 77.61 82.46 87.69
Sim-Cos@k=2 88.55 85.57 92.23
Sim-Cos@k=5 89.30 86.31 94.53
Sim-Cos@k=10 89.30 86.94 94.65
Sim-Cos@k=20 89.55 86.69 94.53
Sim-Cos@k=50 88.06 82.09 94.46
Sim-Cos@k=100 86.56 80.10 93.28
Sim-Cos@k=200 75.12 78.23 86.76
Sim-Dot@k=1 80.09 82.09 88.75
Sim-Dot@k=2 81.34 83.45 90.05
Sim-Dot@k=5 82.58 84.70 91.29
Sim-Dot@k=10 84.57 85.32 92.60
Sim-Dot@k=20 85.57 84.57 93.10
Sim-Dot@k=50 86.07 81.96 93.59
Sim-Dot@k=100 84.08 78.73 92.41
Sim-Dot@k=200 75.12 77.73 86.76

Table 5: The effect of k on detection performance with
IMDB.

Method 5% noise 10% noise 20% noise
Sim-Cos@k=1 28.50 50.85 66.15
Sim-Cos@k=2 49.10 66.80 69.72
Sim-Cos@k=5 57.80 72.05 75.65
Sim-Cos@k=10 59.50 74.10 76.77
Sim-Cos@k=20 59.50 74.90 77.42
Sim-Cos@k=50 60.20 75.55 78.42
Sim-Cos@k=100 59.90 75.50 78.52
Sim-Cos@k=200 60.00 75.45 78.57
Sim-Dot@k=1 57.50 67.25 75.17
Sim-Dot@k=2 57.00 67.30 75.30
Sim-Dot@k=5 57.20 67.95 75.80
Sim-Dot@k=10 57.10 67.75 76.00
Sim-Dot@k=20 57.10 68.15 76.27
Sim-Dot@k=50 57.90 68.55 76.95
Sim-Dot@k=100 59.90 68.60 77.55
Sim-Dot@k=200 58.20 68.25 78.40

The effect of τ on error reduction rate. We 630

analyze the effect of τ on the error reduc- 631

tion rate. We vary the number of τ = 632

{0.5, 0.6, 0.7, 0.8, 0.9, 0.99}. From results in 633

Tab. 6 and Tab. 7, we see that for both Snippets 634

and IMDB, the change of τ has minimal impact on 635

the error reduction rate. Generally, the reduction 636

rate is higher when the noise level is higher. 637

C.2 Correlation. 638

We calculate the Spearman correlation between 639

ranking scores assigned to samples by detection 640

methods. Fig. 3a shows that gradient-based, 641

confident-based, and similarity-based methods 642

have low Spearman correlation with each other. 643

Confident-based and Gradient-based methods have 644

9

Table 6: Error Reduction Rate on Snippets.

Method 5% noise 10% noise 20% noise
Sim-Cos@τ=0.5 66.16 58.95 80.98
Sim-Cos@τ=0.6 50.74 58.83 77.00
Sim-Cos@τ=0.7 48.00 58.20 76.75
Sim-Cos@τ=0.8 46.51 57.83 76.69
Sim-Cos@τ=0.9 46.51 57.46 76.69
Sim-Cos@τ=0.99 46.51 57.46 76.69
Sim-Dot@τ=0.5 42.03 55.72 76.25
Sim-Dot@τ=0.6 43.03 56.34 76.38
Sim-Dot@τ=0.7 45.52 57.08 76.63
Sim-Dot@τ=0.8 46.26 57.33 76.69
Sim-Dot@τ=0.9 46.51 57.46 76.69
Sim-Dot@τ=0.99 46.51 57.46 76.69

Table 7: Error Reduction Rate on IMDB.

Method 5% noise 10% noise 20% noise
Sim-Cos@τ=0.5 28.70 51.00 59.37
Sim-Cos@τ=0.6 28.40 41.15 59.12
Sim-Cos@τ=0.7 28.40 41.15 59.12
Sim-Cos@τ=0.8 28.40 41.15 59.12
Sim-Cos@τ=0.9 28.40 41.15 59.12
Sim-Cos@τ=0.99 28.40 41.15 59.12
Sim-Dot@τ=0.5 28.40 41.15 59.12
Sim-Dot@τ=0.6 28.40 41.15 59.12
Sim-Dot@τ=0.7 28.40 41.15 59.12
Sim-Dot@τ=0.8 28.40 41.15 59.12
Sim-Dot@τ=0.9 28.40 41.15 59.12
Sim-Dot@τ=0.99 28.40 41.15 59.12

negative Spearman correlation, indicating they are645

very different in ranking. We observed the same646

phenomenon in datasets across levels and types of647

noise.648

(a) Spearman correlation of methods on Snippets with
random noise 20%.

(b) Distribution of L2-norm (||ϕ||2) of features

(c) Distribution of similarity
of ⟨ϕ(i), ϕ(j)⟩

(d) Distribution of similarity
of ⟨ϕ(i),ϕ(j)⟩

||ϕ(i)||2||ϕ(j)||2

Figure 3: Visualization of (a) Spearman correlation, (b)
the L2-norm of noisy data points (presented by blue
bars) and normal data points (presented by red bars).
Using normalization (Cosine; (d)) enables the differenti-
ation of the similarity distribution, therefore, enhancing
detection accuracy compared to the unnormalized ap-
proach (Dot; (c)).

10

Figure 4: Detection accuracy of methods measured on Snippets with different levels of noise.

11

Figure 5: Detection accuracy of methods measured on IMDB with different levels of noise.

12

Table 8: Test accuracy on Snippets with 10% noise.

Method Random noise Ambiguity noise Concentrated noise

Removed Rectified Removed Rectified Removed Rectified

Acc. (under noise) 85.43 (+0.00) — 88.24 (+0.00) — 85.08 (+0.00) —

Confidence-W. Entropy 88.07 (+2.64) — 85.04 (-3.20) — 84.56 (-0.52) —
Normalize-Margin 81.75 (-3.68) — 86.09 (-2.15) — 79.73 (-5.35) —
Self-Confidence 84.47 (-0.96) — 87.06 (-1.18) — 82.06 (-3.02) —
Influence Function 90.04 (+4.61) — 85.92 (-2.32) — 81.36 (-3.72) —
Gradient-Cosine 82.94 (-2.49) — 81.18 (-7.06) — 80.48 (-4.60) —
Gradient-Dot 86.01 (+0.58) — 85.13 (-3.11) — 83.29 (-1.79) —
TracIn 85.74 (+0.31) — 86.88 (-1.36) — 77.98 (-7.10) —

Sim-Cos 79.73 (-5.70) 87.85 (+2.42) 85.48 (-2.76) 85.57 (-2.67) 81.58 (-3.23) 82.06 (-3.02)
Sim-Dot 88.29 (+2.86) 87.32 (+1.89) 84.34 (-3.90) 86.58 (-1.66) 81.62 (-3.46) 80.83 (-4.25)

Table 9: Test accuracy on Snippets with 5% noise.

Method Random noise Ambiguity noise Concentrated noise

Removed Rectified Removed Rectified Removed Rectified

Acc. (under noise) 87.14 (+0.00) — 87.36 (+0.00) — 87.93 (+0.00) —

Confidence-W. Entropy 84.86 (-2.28) — 86.57 (-0.79) — 87.80 (-0.13) —
Normalize-Margin 84.65 (-2.49) — 84.82 (-2.54) — 83.77 (-4.16) —
Self-Confidence 85.35 (-1.79) — 83.99 (-3.37) — 86.09 (-1.84) —
Influence Function 85.30 (-1.84) — 86.00 (-1.36) — 85.30 (-2.63) —
Gradient-Cosine 85.43 (-1.71) — 85.13 (-2.23) — 79.51 (-8.42) —
Gradient-Dot 84.56 (-2.58) — 89.21 (+1.85) — 87.06 (-0.87) —
TracIn 84.65 (-2.49) — 87.71 (+0.35) — 81.88 (-6.05) —

Sim-Cos 86.45 (-0.69) 85.17 (-1.97) 87.10 (-0.26) 85.48 (-1.88) 85.39 (-2.54) 87.19 (-0.74)
Sim-Dot 87.15 (+0.01) 87.06 (-0.08) 83.37 (-3.99) 84.34 (-3.02) 84.12 (-3.81) 79.82 (-8.11)

Table 10: Test accuracy on IMDB with 20% noise.

Method Random noise Ambiguity noise Concentrated noise

Removed Rectified Removed Rectified Removed Rectified

Acc. (under noise) 89.92 — 89.36 — 85.98 —

Confidence-W. Entropy 91.00 (+1.08) — 90.73 (+1.37) — 86.66 (+0.68) —
Normalize-Margin 91.00 (+1.08) — 90.73 (+1.37) — 86.66 (+0.68) —
Self-Confidence 91.00 (+1.08) — 90.73 (+1.37) — 86.66 (+0.68) —
Influence Function 90.95 (+1.03) — 90.51 (+1.15) — 87.09 (+1.11) —
Gradient-Cosine 90.59 (+0.67) — 90.93 (+1.57) — 86.78 (+0.80) —
Gradient-Dot 90.43 (+0.51) — 89.45 (+0.09) — 82.87 (-3.20) —
TracIn 90.19 (+0.27) — 91.09 (+1.73) — 82.87 (-3.20) —

Sim-Cos 90.70 (+0.78) 88.73 (-1.19) 90.78 (+1.42) 90.83 (+1.47) 87.76 (+1.78) 84.73 (-1.25)
Sim-Dot 91.49 (+1.57) 90.46 (+0.54) 91.58 (+2.22) 90.13 (+0.77) 87.25 (+1.27) 87.46 (+1.48)

13

Table 11: Test accuracy on IMDB with 10% noise.

Method Random noise Ambiguity noise Concentrated noise

Removed Rectified Removed Rectified Removed Rectified

Acc. (under noise) 91.76 (+0.00) — 91.68 (+0.00) — 89.41 (+0.00) —

Confidence-W. Entropy 91.79 (+0.03) — 92.48 (+0.20) — 90.95 (+1.54) —
Normalize-Margin 91.79 (+0.03) — 92.48 (+0.20) — 90.95 (+1.54) —
Self-Confidence 91.79 (+0.03) — 92.48 (+0.20) — 90.95 (+1.54) —
Influence Function 91.65 (-0.11) — 90.97 (-0.71) — 86.26 (-3.15) —
Gradient-Cosine 91.72 (-0.04) — 91.29 (-0.39) — 88.05 (-1.36) —
Gradient-Dot 90.81 (-0.95) — 92.10 (+0.42) — 88.15 (-1.26) —
TracIn 91.75 (-0.01) — 91.66 (-0.02) — 88.86 (-0.55) —

Sim-Cos 91.12 (-0.64) 91.98 (+0.22) 92.52 (+0.84) 92.17 (+0.49) 90.15 (+0.74) 89.20 (-0.21)
Sim-Dot 91.38 (-0.38) 91.51 (-0.25) 91.52 (-0.16) 91.61 (-0.07) 89.78 (+0.37) 88.37 (-1.04)

Table 12: Test accuracy on IMDB with 5% noise.

Method Random noise Ambiguity noise Concentrated noise

Removed Rectified Removed Rectified Removed Rectified

Acc. (under noise) 91.67 (+0.00) — 92.07 (+0.00) — 91.52 (+0.00) —

Confidence-W. Entropy 92.35 (+0.68) — 92.58 (+0.51) — 91.94 (+0.42) —
Normalize-Margin 92.35 (+0.68) — 92.58 (+0.51) — 91.94 (+0.42) —
Self-Confidence 92.35 (+0.68) — 92.58 (+0.51) — 91.94 (+0.42) —
Influence Function 92.55 (+0.88) — 91.76 (-0.31) — 90.77 (-0.75) —
Gradient-Cosine 92.46 (+0.79) — 90.88 (-1.19) — 89.78 (-1.74) —
Gradient-Dot 91.79 (+0.12) — 92.58 (+0.51) — 90.32 (-1.20) —
TracIn 92.62 (+0.95) — 91.97 (-0.10) — 91.45 (-0.07) —

Sim-Cos 92.10 (+0.43) 92.10 (+0.43) 93.09 (+1.02) 92.50 (+0.43) 92.11 (+0.59) 91.74 (+0.22)
Sim-Dot 92.69 (+1.02) 92.06 (+0.39) 91.63 (-0.44) 91.09 (-0.98) 91.59 (+0.07) 90.96 (-0.56)

14

