Detecting and Rectifying Noisy Labels: Similarity-based Methods

Huu-Tien Dang’ Nguyen Duc-Thang* Hoang Thanh-Tung® Naoya Inoue'?

fJAIST
{s2310417,

Abstract

Label noise in datasets could damage the per-
formance of neural net training. As the size of
modern deep networks grows, there is a grow-
ing demand for automated tools for detecting
such errors. In this paper, we propose model-
agnostic error detection and rectification meth-
ods utilizing the penultimate feature from the
trained neural network. Our idea is based on
an observation that the similarity of penulti-
mate features is higher for within-class data
points than that of other class data points, mak-
ing the probability of label occurrence within
a tight-similar cluster, informative to detect
and rectify errors. Extensive experiments show
our method not only demonstrates high per-
formances across various noises but also auto-
matically rectifies these errors to improve the
quality of datasets and model generalization.

1 Introduction

While the majority of knowledge in Al systems is
learned through unsupervised learning, supervised
learning is an indispensable step in building strong
Al systems (c.f. the LeCun’s cake). For Large
Language Models (LLMs) such as GPTs (Brown
et al., 2020), LLaMA (Touvron et al., 2023a,b),
and Gemini (Team et al., 2023), supervised learn-
ing accounts for only a small fraction of the total
computation budget but has a significant impact
on the models’ performance. Recent research (e.g.
Zhou et al., 2023; Gunasekar et al., 2023) finds that
high quality training data significantly improves
performance while reducing the training cost by
orders of magnitude. The need for automated tools
for improving the quality of supervised learning
data is rising as datasets and models are getting
larger at an unprecedented speed.

Real world datasets contain a notable amount of
errors (Beyer et al., 2020; Northcutt et al., 2021b).
Previous works (Dau et al., 2022; Nguyen-Duc
et al., 2023) showed that removing errors from the

*FPT Software Al Center < Vietnam National University {RIKEN
naoya-i}@jaist.ac.jp

training set improves the performance of Al models
trained on that dataset. Automatic error rectifica-
tion, however, is an underexplored topic. In this
paper, we present a feature based approach for error
detection and rectification in large scale datasets.
We theoretically show that the similarity between
the penultimate feature of a mislabeled data point
and its true class data points is larger than that for
data points from other classes (Sec. 3.1). Inspired
by this observation, we develop simple yet effective
similarity-based methods for detecting and rectify-
ing label errors (Sec. 3.2). Extensive experiments
demonstrate the superiorities of our methods across
various settings (Sec. 4.2). Furthermore, our meth-
ods are posthoc and model-agnostic i.e. they can
be applied to any deep neural network (DNN) ar-
chitectures without the need for retraining.

2 Background and related work

Notation. Letz = (x,y) be a data point, where
x € Xisaninputandy € Yisanoutput. Let D =
{zD}7_| be a N-class noisy training dataset of n
data points. Let f : X —) be a deep model pa-
rameterized by 0; = argmin, 1 37 £(z(),0)
are optimal parameters of f measured on D, where
0:Y xY +— R* be the loss function. In this paper,
g (z) = V(2" §) is denoted as the gradient
of the loss at § with respect to (w.r.t) 6.

Confident-based Error Detection Methods.
Confident-based methods are based on the no-
tion of confident learning (Northcutt et al., 2021a)
that deriving label quality measurements by us-
ing predicted probability distribution (Wang and
Mueller, 2022; Kuan and Mueller, 2022; Thya-
garajan et al., 2022). Low confidence serves as
a heuristic indicating the likelihood of a label
noise. Given a data point z with output label
vy = (Y1, -, Yk, ---yn), the model’s predicted prob-
abilities is p = (p1, ..., Pk, ---, PN) Over N classes.
Northcutt et al. (2021a) proposed three label quality

scoring methods:

(1) Self-Confidence (SC) refers to the estimated
probability that the input x belongs to the class
associated with its given label k: SC(z, p) = py,,
fork € {1,2,...,N}.

(2) Normalized-Margin (NM) is the quantified
difference between the model’s estimated proba-
bility of the given label and the probability of the
most likely class: NM(z,p) = py, — py,+, for
Jr=arg max;-£ke{1,2,..,N} Py;

(3) Confidence-Weighted Entropy (CE) is the
ratio of SC score agd the normalized en-

i

tropy: CE(z,p) = T (p)> Where Hn(p) =

N
— ey O Pnlog(pn)-

n=1

Gradient-based Error Detection Methods.
Koh and Liang (2017) use Influence Function (IF)—
a concept from robust statistic (Hampel, 1974)—
for measuring the influence of a training data point
to weights of a DNN. Dau et al. (2022) proposed a
way to adapt IF and its variants i.e. Gradient Dot
Product (GD; Charpiat et al. (2019a)), Gradient
Cosine (GC; Charpiat et al. (2019a)), and Tracing
Gradient Decent (Tracln; Pruthi et al. (2020)), for
identifying erroneous in large-scale source code
datasets. The idea is the gradients of error data
points exhibit significantly large magnitudes and
are opposite in direction to the gradients of normal
data points. The algorithm computes the influence
score of each data point in the noisy dataset with
data points in a reference set. A more negative
influence score means is more likely to be an error.
Nguyen-Duc et al. (2023) use class information
to improve the performance and stability of these
gradient methods.

(DIF(z®,20) = —g;(z@) TH " g5(2).

(2) GD(z"),29) = (gy(21"), gy(217)),

(3) GC(2"), 21) = cos(g;(21), gy(z)).

(4) TracIn(z®,209)) = Zthl n:GD(z"), z0)),
where H; is the hessian matrix, 7" is the number of
epochs, and 7, is the learning rate at epoch ¢.

Other Error Detection Methods. The rule-
based approach (Chu et al., 2013) and statistics-
based approach (Huang and He, 2018) are com-
monly used for structured data such as tabular data.
Krishnan et al. (2016) combines active learning
and convex models to detect errors on small clas-
sification datasets. These methods are not suitable
for deep learning, as they assume convexity in the

model, and the rules in many large scale datasets
are not easy to find and describe.

3 Method
3.1 Observation

We design experiments to randomly corrupt and
inject noise into datasets. We then train a deep
network using gradient descent on these altered
datasets to measure how noisy data points behave
on other data points. As an illustrative example
in Fig. 1, we observed that the similarity between
the mislabeled data points and their true class data
point penultimate-layer representations is often
higher than other class data points. We find that

(a) Cosine similarity (b) Dot product
Figure 1: Distribution of (a) Cosine similarity and (b)
Dot product over IMDB (Maas et al., 2011) with 10%
noise. Blue bars represent the similarity between mis-
labeled data points and their true class data points, red
bars represent the similarity between mislabeled data
points and other class data points. Features are obtained
from a trained BERT model.

this phenomenon persists across varying percent-
ages of noises. To complement our observation, we
provide a theoretical explanation in Appendix. B.

3.2 Algorithm

Our algorithm is detailed in Algorithm 1. It re-
quires a small auxiliary dataset D,yx, a similarity
measure o(-,-). We denote ¢ and ¢() be the
penultimate feature representations of z(?) and z(?)
obtained from the trained model f; respectively.
We employ two primary similarity measures: Dot
product (DOT = <¢>(i), Y)>) and Cosine similar-
ity (COS = {2097) e g S(Daux, 27

¥ (COS = ey We denote &(Daux, 27)
as k most similar to z(9) in Dyyy.

Error Detection. Given a noisy dataset D, for
each data point z) e D with label y, our al-
gorithm finds S(Dayx,z?) such that every data
point in D but not in S(Djyx, z(i)) is at most simi-
lar to z(as the least similar point in S(Dyux, z(")
(line 6). We define a scoring function that return

Algorithm 1 Similarity-based Error Detection and
Rectification
Require:

1: D= {Z(i)}:’b:l;na noisy dataset

2: Daux = {Z(j)}jzll an auxiliary dataset.

3: o(+,-): a similarity measure.
4: k: number of most similar data points.
Ensure: noisy data points in D are rectified.
/* Error Detection */
5. for z() € D do
¢ S(Daux,29) = {20) € Dy}
s.t. |S(Daux, 29)| = k, and

o(z?,z0)) > max o(z%,2'™)

T 2/()eD\S(Daux,z)

s = 13000 8D 2 Ly = y@)
8: end for
9: DT = sort(D, key = s, ascending = True)
/* Error Rectification™®/
10: for z() € DI, do
11: z0) = (X(i),MODE(S(Daux,Z(i))))
12: return D

s(Y)—the probability of occurrence of label y® in
S(Daux, 2?) (line 7). The indicator I(-) returns 1
if the condition holds. A lower s is, more likely a la-
bel error. We sort the data points in D in ascending
order of s and obtain the sorted D' (line 9).

Error Rectification. We select the first p% sam-
ples of ranked set DT denoted as D; and define
a class decision rule MODE(-) that selects the la-
bel in S(Dyux, (") has the highest probability and
greater than threshold 7. Otherwise, the label of
z(") remains unchanged (line 11).

4 Experiment

4.1 Experiment Setting

Dataset and Model. We evaluate our method on
two common benchmarks: Sentiment Analysis on
IMDB (Maas et al., 2011) and Short Text Classi-
fication on Snippets (Phan et al., 2008). We use
BERT (Devlin et al., 2019) as the standard model
for all settings.

Modeling Realistic Noise. We construct three
realistic, human-originated types of noise: (1) Uni-
form noise: we randomly select data points and
change the label to a different class. (2) Systematic
ambiguity noise: we establish a rule h, which maps
data points in a specific class to another fixed one.

This means that the labels of selected instances in
class i are flipped to h(i). To ensure distinctive-
ness, the mapping function h adheres to the con-
dition h(i) # h(j)Vi,j = {1,...,N}, and i # j.
This noise models the situations where inputs from
multiple annotators are often aggregated, the re-
sulting differences in annotations can serve as a
model of systematic noise derived from human dis-
agreements. (3) Concentrated noise: we select
data points that are densely clustered and change
their labels to target labels. We simulate scenarios
where the datasets are poisoned by malicious to
evaluate the sanitization ability of methods against
data poisoning attacks.

Setting. For each dataset, we construct groups
of various sizes of noisy samples by corrupting
the label of p% of the original training data. We
construct the auxiliary dataset D,y by randomly
selecting m samples from the validation set. We
fine-tune BERT on noisy dataset D and select the
best checkpoint measure on the validation set. We
select top t% ranked samples in DID and use error
detection accuracy for evaluation. After rectify-
ing/removing ranked samples (potentially noisy
samples), we re-train the model and report the test
accuracy and error reduction rate. Details of the
dataset, model, and implementations are in Ap-
pendix. A.

4.2 Main Result and Analysis

Error detection accuracy. (1) Fig. 2 shows the
error detection accuracy of methods with three
types of noise with different percentages. As a re-
sult, when ¢ increases the performance of gradient-
based methods drastically decreases. This pattern
is observed in all three types of noise across differ-
ent percentages and in both Snippets (Fig. 4) and
IMDB (Fig. 5). This result shows that the gradient-
based methods are unstable and less inconsistent.
(2) Confident-based methods are precise with uni-
form noises and systematic ambiguity noise yet
struggle with concentrated noise (Fig. 2¢). (3) Sim-
Cos and Sim-Dot have high detection accuracy and
slightly decrease when ¢ increases with difference
noise. This confirmed that the Similarity-based
methods are effective and more robust to ambiguity
and concentrated noises than gradient-/confident-
based methods. (4) We observe that Sim-Dot often
has low detection accuracy on IMDB (Fig. 5). We
theoretically proved that for classification datasets
with NV classes, the similarity of within-class data

1.0
0.9
08
07

0.6

054 —— sim-Dot
Sim-Cos

1.0 T—=¢

0.9
0.8
0.7

0.6

0.5 —— Sim-Dot
Sim-Cos

04 —— GC 0.4 —A— GC
! —&— GD —— GD
—A— IF —— IF

03 —&— Tracin 03 —&— Tracin
scC sC
029 —%— NM 029 —— NM

CE

0.9 1

0.8

0.7 4

0.6

0.5 4

0.4 1

0.3+

0.2 4

—e— Sim-Dot

Sim-Cos
—— GC
—&— GD
—A— IF

1 2 3 4 5 6

7 8 9 10

(a) Random noise p = 5%

0.1

(b) Systematic ambiguity noise p = 10%

5 6 7 8

0.1

9 10 1

3 4 5

(c) Concentrated noise p = 20%

Figure 2: Error detection accuracy of methods measure on Snippets. The x-axis in the figures presents the change of

t from 10 — 100%.

Table 1: Test accuracy after remove/rectify potential noise samples on Snippets with 20% noise. The best and

runner-up are marked.

Random noise

Ambiguity noise

Concentrated noise

Method
Removed Rectified Removed Rectified Removed Rectified
Acc. (under noise) 88.64 (+0.00) — 82.50 (+0.00) — 79.38 (+0.00) —
Confident-W. Entropy ~ 83.02 (-5.62) — 84.38 (+1.88) — 77.50 (-1.88) —
Normalize-Margin 87.19 (-1.45) — 87.01 (+4.51) — 77.89 (-1.49) —
Self-Confidence 86.05 (-2.59) — 87.36 (+4.86) — 78.02 (-1.36) —
Influence Function 83.24 (-5.40) — 81.71 (-0.79) — 79.51 (+0.13) —
Gradient-Cosine 73.81 (-14.83) — 83.33 (+0.83) — 82.23 (+2.85) —
Gradient-Dot 86.53 (-2.11) — 82.01 (-0.49) — 78.68 (-0.70) —
Tracln 85.48 (-3.16) — 81.71 (-0.79) — 76.67 (-2.71) —
Sim-Cos 89.43 (+0.79) 87.85(-0.79) 85.00 (+2.50) 83.73 (+1.23) 81.53 (+2.15) 83.38 (+4.00)
Sim-Dot 86.71 (-1.93) 87.32(-1.32) 82.98 (+0.48) 83.95 (+1.45) 81.53 (+2.15) 81.97 (+2.59)

points is approximately N — 1 times larger than
other class data points. For IMDB where N = 2,
this fraction becomes approximately 1. That ex-
plains why Sim-Dot does not work well on IMDB.
Mathematical details are in Appendix. B. (5) Sim-
Cos, consistently outperforms Sim-Dot by a large
margin for all settings. We explain from the stand-
point of feature normalization. By definition, Co-
sine similarity can be seen as the normalized Dot
product. In Fig. 4 (b), we empirically show that
the noisy samples have Lo-norm smaller than nor-
mal samples. Therefore, when dividing the feature
of data points by its norm, the similarity between
noisy and normal data points tends to be larger,
leading to a more distinct distribution of similari-
ties.

Improving datasets and model generalization.
Tab.1 shows a significant improvement in the test
accuracy when removing/rectifying concentrated
noise and systematic ambiguity noise. Neverthe-
less, a counter-intuitive observation regarding ran-

dom noise shows that removing/rectifying noise
reduces the generalization of models, even when
detection accuracy is high. We posit that deep mod-
els are robust to massive random noise (Rolnick
et al., 2017), then as the training process, the model
also memorizes the noise, approaches the optimum,
and the gradient of noise becomes smaller. The ef-
fect of noise, therefore, also decreases as the model
converges. When removing noise, the model de-
grades the feature representation of noise samples
and loses the generalization to unseen samples.

5 Conclusion

We introduce similarity-based algorithms for de-
tecting and rectifying errors on large-scale datasets.
We theoretically show that the similarity between
the penultimate feature’s data points is useful for
detecting errors. Experiment results demonstrated
the superior performance of our methods, and their
capability to improve datasets quality and model
generalization.

Limitations

We discuss the limitations of similarity-based meth-
ods: (1) The optimal detection accuracy of Sim-
Cos and Sim-Dot unfortunately based on empirical
validation, and depends on the choice of k£ and D«
and also with different datasets and model architec-
tures. (2) The generalization of models under the
removal or rectification of noise remains uncertain,
due to the limited exploration of datasets.

Ethics Statement

We consider only the public datasets and create
artificial noises for evaluation. We do not pose any
concern about the quality of the original datasets.

Acknowledgements

We thank Thu Tran and the anonymous reviewers
for their constructive feedback.

References

Naman Agarwal, Brian Bullins, and Elad Hazan. 2017.
Second-order stochastic optimization for machine
learning in linear time. The Journal of Machine
Learning Research, 18(1):4148-4187.

Lucas Beyer, Olivier J. Hénaff, Alexander Kolesnikov,
Xiaohua Zhai, and Adron van den Oord. 2020. Are
we done with imagenet? CoRR, abs/2006.07159.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Guillaume Charpiat, Nicolas Girard, Loris Felardos,
and Yuliya Tarabalka. 2019a. Input similarity from
the neural network perspective. Advances in Neural
Information Processing Systems, 32.

Guillaume Charpiat, Nicolas Girard, Loris Felardos,
and Yuliya Tarabalka. 2019b. Input similarity from
the neural network perspective. Advances in Neural
Information Processing Systems, 32.

Xu Chu, Thab F. Ilyas, and Paolo Papotti. 2013. Holistic
data cleaning: Putting violations into context. In
2013 IEEE 29th International Conference on Data
Engineering (ICDE), pages 458—-469.

Anh TV Dau, Nghi DQ Bui, Thang Nguyen-Duc, and
Hoang Thanh-Tung. 2022. Towards using data-
influence methods to detect noisy samples in source
code corpora. In 37th IEEE/ACM International Con-
ference on Automated Software Engineering, pages
1-3.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio
César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo
de Rosa, Olli Saarikivi, et al. 2023. Textbooks are all
you need. arXiv preprint arXiv:2306.11644.

Frank R. Hampel. 1974. The influence curve and its
role in robust estimation. Journal of the American
Statistical Association, 69(346):383-393.

Kazuaki Hanawa, Sho Yokoi, Satoshi Hara, and Ken-
taro Inui. 2021. Evaluation of similarity-based ex-
planations. In International Conference on Learning
Representations.

Zhipeng Huang and Yeye He. 2018. Auto-detect: Data-
driven error detection in tables. In Proceedings of
the 2018 International Conference on Management
of Data, pages 1377-1392.

Pang Wei Koh and Percy Liang. 2017. Understanding
black-box predictions via influence functions. In
International conference on machine learning, pages
1885-1894. PMLR.

Sanjay Krishnan, Jiannan Wang, Eugene Wu, Michael J.
Franklin, and Ken Goldberg. 2016. Activeclean: In-
teractive data cleaning for statistical modeling. Proc.
VLDB Endow., 9(12):948-959.

Johnson Kuan and Jonas Mueller. 2022. Model-agnostic
label quality scoring to detect real-world label errors.
In ICML DataPerf Workshop.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142—150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Thang Nguyen-Duc, Hoang Thanh-Tung, Quan Hung
Tran, Dang Huu-Tien, Hieu Nguyen, Anh T. V. Dau,
and Nghi Bui. 2023. Class based influence functions
for error detection. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 1204—1218,
Toronto, Canada. Association for Computational Lin-
guistics.

http://arxiv.org/abs/2006.07159
http://arxiv.org/abs/2006.07159
http://arxiv.org/abs/2006.07159
https://doi.org/10.1109/ICDE.2013.6544847
https://doi.org/10.1109/ICDE.2013.6544847
https://doi.org/10.1109/ICDE.2013.6544847
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://www.jstor.org/stable/2285666
http://www.jstor.org/stable/2285666
http://www.jstor.org/stable/2285666
https://openreview.net/forum?id=9uvhpyQwzM_
https://openreview.net/forum?id=9uvhpyQwzM_
https://openreview.net/forum?id=9uvhpyQwzM_
https://doi.org/10.14778/2994509.2994514
https://doi.org/10.14778/2994509.2994514
https://doi.org/10.14778/2994509.2994514
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://aclanthology.org/P11-1015
https://doi.org/10.18653/v1/2023.acl-short.104
https://doi.org/10.18653/v1/2023.acl-short.104
https://doi.org/10.18653/v1/2023.acl-short.104

Curtis Northcutt, Lu Jiang, and Isaac Chuang. 2021a.
Confident learning: Estimating uncertainty in dataset

labels. Journal of Artificial Intelligence Research,
70:1373-1411.

Curtis G Northcutt, Anish Athalye, and Jonas Mueller.
2021b. Pervasive label errors in test sets destabilize
machine learning benchmarks. In Thirty-fifth Con-
ference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 1).

Pouya Pezeshkpour, Sarthak Jain, Byron Wallace, and
Sameer Singh. 2021. An empirical comparison of in-
stance attribution methods for NLP. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 967-975, On-
line. Association for Computational Linguistics.

Xuan-Hieu Phan, Le-Minh Nguyen, and Susumu
Horiguchi. 2008. Learning to classify short and
sparse text & web with hidden topics from large-
scale data collections. In Proceedings of the 17th
international conference on World Wide Web, pages
91-100.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund
Sundararajan. 2020. Estimating training data influ-
ence by tracing gradient descent. Advances in Neural
Information Processing Systems, 33:19920-19930.

David Rolnick, Andreas Veit, Serge Belongie, and Nir
Shavit. 2017. Deep learning is robust to massive
label noise. arXiv preprint arXiv:1705.10694.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15(56):1929-1958.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Aditya Thyagarajan, Elias Snorrason, Curtis Northcutt,
and Jonas Mueller. 2022. Identifying incorrect an-
notations in multi-label classification data. arXiv
preprint arXiv:2211.13895.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Wei-Chen Wang and Jonas Mueller. 2022. Detecting la-
bel errors in token classification data. arXiv preprint
arXiv:2210.03920.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, et al. 2023. Lima: Less is more for alignment.
arXiv preprint arXiv:2305.11206.

A Implementation detail

A.1 Dataset and Model

Snippets (Phan et al., 2008) is an open dataset
of web search snippets retrieved from Google
Search with 8 domains including Business, Com-
puters, Culture-Arts-Entertainment, Education-
Science, Engineering, Health, Politics-Society,
and Sports. The training data and testing
data include 10,060 and 2,280 snippets respec-
tively. For validation purposes, we randomly
split original training data into train/valid with
the ratio of 8048/2012. The dataset can be
found at http://jwebpro.sourceforge.
net/data-web-snippets.tar.gz.

IMDB (Maas et al., 2011) is the most com-
mon benchmark for Sentiment Analysis task.
IMDB includes 50000 reviews from the Inter-
net Movie Database website with original 25000
negative and 25000 positive reviews. For val-
idation purposes, we randomly split into train-
ing, validation, and test sets of sizes 15000,
5000, and 25000. The IMDB dataset can
be found at https://ai.stanford.edu/
~amaas/data/sentiment/

BERT (Devlin et al., 2019) stands for Bidirec-
tional Encoder Representations from Transformers.
BERT is one of the most standard used pre-trained
model for language understanding tasks. In all
settings, we use BERT base uncased version.

A.2 Experiment detail

BERT was trained with AdamW (Loshchilov and
Hutter, 2019) with learning rate n = 5e — 5,
momentum 3 = (0.9,0.999), cross entropy loss,
batch-size of 16 with 15 epochs. For regulariza-
tion, we use Dropout (Srivastava et al., 2014) of
0.2. We choose p = {5%,10%,20%}, m =
1000, £ = {1,2,5,10,20,50,100,200}, t =
{10%, 20%, ..., 100%}, and 7 = 0.8. We compute
the IF score for BERT with the last layer gradient as
previous works (Pezeshkpour et al., 2021; Hanawa
et al., 2021) and use LiSSA (Agarwal et al., 2017)
to approximate the Hessian. For TracIn method, we

https://openreview.net/forum?id=XccDXrDNLek
https://openreview.net/forum?id=XccDXrDNLek
https://openreview.net/forum?id=XccDXrDNLek
https://doi.org/10.18653/v1/2021.naacl-main.75
https://doi.org/10.18653/v1/2021.naacl-main.75
https://doi.org/10.18653/v1/2021.naacl-main.75
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://jwebpro.sourceforge.net/data-web-snippets.tar.gz
http://jwebpro.sourceforge.net/data-web-snippets.tar.gz
http://jwebpro.sourceforge.net/data-web-snippets.tar.gz
https://ai.stanford.edu/~amaas/data/sentiment/
https://ai.stanford.edu/~amaas/data/sentiment/
https://ai.stanford.edu/~amaas/data/sentiment/

calculate the influence score from the first epoch
to the best epoch. We run experiments on 4 seeds
= {16, 32,64, 128} and aggregate the results by
taking the mean of these 4 seeds. A Nvidia RTX
GeForce 3090 Ti was used to run experiments. Our
implementation was attached to the supplementary
materials.

B Theoretical Analysis

We consider a deep network received input x € R?,
where d is the input dimension. Let § be the soft-
max activation function, b € RY be the bias.
Given an output function ¢y parameterized by
W e RV*4. For two inputs x(*) and xY) we have
two output vectors ¢y (x()) and ¢y (x9)) respec-
tively. As seen by a deep network, we can mea-
sure the influence between x(and x(7) by quan-
tifying how much ¢y (x(9) change would change
dw (x9)) as well. If x(9 and xU) have high sim-
ilarity, then x(¥ have high influence on x() and
changing ¢y (x(¥)) have large effect on ¢y (x7)).
Otherwise, if they have low similarity, then x(*)
have low influence on x/) and changing ¢y (x(¥))
have small effect on ¢y (xU)). To measure the
similarity between data points, we employ a sym-
metric kernel proposed by Charpiat et al. (2019b):
The Inner Product

KD, xD) = (Vwow (x), Vwow (x1))
ey

We choice ¢ is the Cross Entropy between softmax
activation output y = §(Wx + b) and true dis-
tribution y. We have ¢y (x) = ¢(y,y; W). For
simplicity, we remove the bias term. Let denote
u = Wxand {(y,y) = {(y,y; W). Using the
chain rule:

Vwl(y,y) = vec (W)

e (233 00)

ou oW
= Vul(3.y)x ",)
where VCC(M) is the vectorization of the
derivative of the loss ¢ with respect to W. The
partial =7 is
ou dy Ou

The first term on the right hand side of Eqn. 3 is
partial derivatives of the loss w.r.t the predicted

output y. Regarding to the fact: y is the one-hot
vector present label k£ has element y, = 1 and
y; = 0if ¢ # k. We have:

ouy,y) _ [M@,y) L y) o)
8}7 o Oy, YN

—|0-.-L...
- [0 1 0})
The second term is the matrix comprises partial

derivatives of the predicted output ¥ w.r.t u. Re-
garding to the fact:

[091 O o 7
8u1 6u2 6UN
al _ | %9 Odk Ok 5)
811 aul 6u2 8uN
9gn 9Yn YN
L Ou1 OJug Jup |

Substitute Eqn. 5 and Eqn. 4 into Eqn. 3, we get

oy,y) _
ou

[8e(y,y)% L. oY) og .. OUYLY) Ok }
oy Oui 0y Oug 0y Oupn

(6)

Given a softmax activation function ¢ for class
k: Case 1: ¢« = k, we compute the derivative of
softmax output ¢ W.r.t ug:

O B 0 ek
Ouy, N Oouy, sz\il el

= k(1 — r) (7

Case 2: ¢ # k, we compute the derivative of soft-
max output g W.r.t u;:

O . 0 ek
ou; - ou; <Zz]\il em) ®)

Using the chain rule, we get:

Uk Us

07 el . e .
Ve __°© 1 o —YrYi 9

oui (Zfil €Ui>2

Substitute Eqn. 7 and Eqn. 9 into Eqn. 6, we get a
column vector:

R . R ~ T
Vul(3,y)=[-91--1=Gp---—gn] (10)

The inner product kernel in Eqn. 2 become:
GG
=V l(3D, yNTT (3D, y0))y
. (X(j)TX(i)) (1)

K(x®,x0))

We denote G(“) as the dot product of two gradients
of the loss at x(9) and x(7). Suppose input x(and
input x\9) have label k and k&’ corresponding. We
have

iR |
12)

we consider 2 cases:
Ifk=k"

Gl =5 4+ - -9
A(3) ~(5)

N
(- -g)+ Y iy
n=1,n#k
(13)
If k # K':

G — @) ..

-y +(1- (l))(?9;2 N+

(1= g (=) + - + 309

=3 @)+ @ -

N
+ oy il (14)
n=1,n#kn#k’

During the training process, the model is more
confident about the labels of data points, indicating

the value of y(" and y(j) being closer to 1. Assume

a well—tramed model, and zf/li) 3],(6],) — ;) =

99 ~ e = 1= (n # kand n # /). Substitute
these values into Eqn. 13 and Eqn. 14, we get :

G~ (1-a)?+(N-1) (5
Gj) N(1 - a)? _ 2
G ~ o - e a9

As N become very large with deep learning dataset
and € small, the magnitude of Gg;)k, is close to

0 for k # k. That means data points in different
classes tend to be pushed into different orthogonal
sub-spaces. Let’s consider the the magnitude of
G;)k, and G,(gé)k,, divide |Gk k,] by \Gk¢k,| we
get:

K9 |Gk k/| 1= a)? + (N - 1)
ij ~ _ 2
Kide 1G] | -]
_E(N =1 +&(N-1)
- 2N
~N-—-1 (17)

Here, the kernel % foe k, x kgé)k,) represents the sim-

ilarity between x(*) and x(7) when they share the
same label (different labels). This explains why
mislabeled data points are often more similar to
true class data points than data points in other
classes.

Similarity-based methods do not work well on
IMDB (Fig. 5). For the IMDB dataset with N =
2, the fraction are approximately 1. Hence, the
similarity between data points within the same class
and those in the remaining class does not have a
significant gap.

C Ablation studies

C.1 The effect of the size of D,,x, the number
of k, and 7.

The effect of the size of D,,x. We change the
size of Dyux from 100 to 1500, fix £ = 100. Tab. 2
and Tab. 3 show the change in error detection accu-
racy as the size of Dyyx changes. We observed that:
(1) the detection accuracy of the methods increases
as the size of D,,x increases. This is true for both
Snippets and IMDB, Sim-Cos and Sim-Dot, and
for all levels of noise {5%, 10%, 20%}. (2) The ac-
curacy gains are larger for smaller D,,x values. (3)
Sim-Cos outperforms Sim-Dot for all noise levels
and most D,,x values.

The effect of k. Tab. 4 and Tab. 5 show that Sim-
Cos and Sim-Dot have accuracy increase as k in-
creases for all noise levels {5%, 10%,20%} and
for most values of k. The accuracy gains are often
larger for smaller values of k. Sim-Cos outper-
forms Sim-Dot, especially for larger values of k for
all noise levels and most values of k. The impact of
noise on detection accuracy with Snippets is gen-
erally small, but it increases with k. For Sim-Cos
with 20% noise in Tab. 4, the accuracy starts to

Table 2: The effect of the size of Dy, setting with
Snippets.

Table 4: Error detection accuracy of Sim-Cos and Sim-
Dot changes as k changes with Snippets.

Method 5% noise 10% noise 20% noise Method 5% noise 10% noise 20% noise
Sim-Cos @100 16.91 22.63 31.69 Sim-Cos @k=1 77.61 82.46 87.69
Sim-Cos @200 51.99 40.67 65.25 Sim-Cos @k=2 88.55 85.57 92.23
Sim-Cos @300 57.46 56.96 80.23 Sim-Cos @k=5 89.30 86.31 94.53
Sim-Cos @400 60.45 72.38 86.45 Sim-Cos@k=10 89.30 86.94 94.65
Sim-Cos @500 75.37 78.60 86.88 Sim-Cos @k=20 89.55 86.69 94.53
Sim-Cos @600 717.36 78.60 89.93 Sim-Cos @k=50 88.06 82.09 94.46
Sim-Cos @700 82.58 78.48 93.10 Sim-Cos @k=100 86.56 80.10 93.28
Sim-Cos @800 85.07 78.60 92.91 Sim-Cos @k=200 75.12 78.23 86.76
Sim-Cos @900 86.07 79.72 93.16 Sim-Dot@k=1 80.09 82.09 88.75
Sim-Cos@ 1000 86.56 80.01 93.28 Sim-Dot@k=2 81.34 83.45 90.05
Sim-Cos@ 1500 88.06 80.97 94.28 Sim-Dot@k=5 82.58 84.70 91.29
Sim-Dot@ 100 16.91 22.63 31.69 Sim-Dot@k=10 84.57 85.32 92.60
Sim-Dot@200 51.74 40.92 64.26 Sim-Dot@k=20 85.57 84.57 93.10
Sim-Dot@300 57.96 56.59 79.42 Sim-Dot@k=50 86.07 81.96 93.59
Sim-Dot@400 61.19 70.64 86.82 Sim-Dot@k=100 84.08 78.73 92.41
Sim-Dot@500 74.62 78.23 87.01 Sim-Dot@k=200 75.12 71.73 86.76
Sim-Dot @600 76.36 78.10 88.87
Sim-Dot@700 81.34 77.36 92.91
Sim-Dot@800 82.83 77.36 92.54 Table 5: The effect of k£ on detection performance with
Sim-Dot@900 83.83 78.10 92.17 IMDB.

Sim-Dot@ 1000 84.08 78.73 92.41
Sim-Dot@ 1500 85.32 80.34 93.78 Method 5% noise 10% noise 20% noise
Sim-Cos @k=1 28.50 50.85 66.15
Sim-Cos @k=2 49.10 66.80 69.72
Table 3: The effect of the size of D, on detection Sim-Cos @k=5 57.80 72.05 75.65
performance with IMDB. Sim-Cos@k=10 59.50 74.10 76.77
Sim-Cos @k=20 59.50 74.90 77.42

Method 5% noise 10% noise 20% noise Sim-Cos @k=50 60.20 75.55 78.42
Sim-Cos@ 100 6.40 855 20.10 Sim-Cos @k=100 59.90 75.50 78.52
Sim-Cos @200 58.10 74.00 78.55 Sim-Cos @k=200 60.00 75.45 78.57
Sim-Cos@300 60.30 75.60 78.55 Sim-Dot@k=1 57.50 67.25 75.17
Sim-Cos @400 60.10 75.65 78.55 Sim-Dot@k=2 57.00 67.30 75.30
Sim-Cos@500 60.20 75.55 78.55 Sim-Dot@k=5 57.20 67.95 75.80
Sim-Cos @600 59.90 75.70 78.52 Sim-Dot@k=10 57.10 67.75 76.00
Sim-Cos@700 60.20 75.55 78.45 Sim-Dot@k=20 57.10 68.15 76.27
Sim-Cos @800 60.10 75.60 78.47 Sim-Dot@k=50 57.90 68.55 76.95
Sim-Cos @900 60.20 75.60 78.42 Sim-Dot@k=100 59.90 68.60 77.55
Sim-Cos@1000 59.90 75.50 78.52 Sim-Dot@k=200 58.20 68.25 78.40
Sim-Cos@1500 60.10 75.55 78.50
Sim-Dot@ 100 6.40 8.55 20.10
g;z_gggggg g;:gg 22:2(5) ;Z;é The effect of 7 on error reduction rate. We
Sim-Dot @400 58.10 68.20 78.47 analyze the effect of 7 on the error reduc-
Sim-Dot @500 57.90 67.10 71.95 tion rate. We vary the number of 7 =
Sim-Dot@600°— 58.00 - 73.65 78.33 {0.5,0.6,0.7,0.8,0.9,0.99}. From results in
Sim-Dot@700 58.50 69.45 78.52 .
Sim-Dot@800 5790 65.70 7787 Tab. 6 and Tab. 7, we see that for both Snippets
Sim-Dot @900 58.20 68.65 77.47 and IMDB, the change of 7 has minimal impact on
Sim-Dot@1000 59.90 68.60 71.55 the error reduction rate. Generally, the reduction
Sim-Dot@ 1500 57.90 68.05 78.10

decrease after k£ = 20. This suggests that using
larger k£ can harm the accuracy when the data is
very noisy. For Sim-Dot with 10% and 20% noise
in Tab. 4, the accuracy changes are less consistent
across different values of k. This suggests that
Sim-Dot may be more sensitive to the choice of k.

rate is higher when the noise level is higher.

C.2 Correlation.

We calculate the Spearman correlation between
ranking scores assigned to samples by detection
methods. Fig. 3a shows that gradient-based,
confident-based, and similarity-based methods
have low Spearman correlation with each other.
Confident-based and Gradient-based methods have

Table 6: Error Reduction Rate on Snippets.

Method 5% noise 10% noise 20% noise
Sim-Cos@7=0.5 66.16 58.95 80.98
Sim-Cos@7=0.6 50.74 58.83 77.00
Sim-Cos@7=0.7 48.00 58.20 76.75
Sim-Cos@7=0.8 46.51 57.83 76.69
Sim-Cos@7=0.9 46.51 57.46 76.69
Sim-Cos@7=0.99 46.51 57.46 76.69
Sim-Dot@7=0.5 42.03 55.72 76.25
Sim-Dot@7=0.6 43.03 56.34 76.38
Sim-Dot@71=0.7 45.52 57.08 76.63
Sim-Dot@7=0.8 46.26 57.33 76.69
Sim-Dot@7=0.9 46.51 57.46 76.69
Sim-Dot@7=0.99 46.51 57.46 76.69

Table 7: Error Reduction Rate on IMDB.

Method 5% noise 10% noise 20% noise
Sim-Cos@7=0.5 28.70 51.00 59.37
Sim-Cos@7=0.6 28.40 41.15 59.12
Sim-Cos@7=0.7 28.40 41.15 59.12
Sim-Cos@7=0.8 28.40 41.15 59.12
Sim-Cos@7=0.9 28.40 41.15 59.12
Sim-Cos@7=0.99 28.40 41.15 59.12
Sim-Dot@7=0.5 28.40 41.15 59.12
Sim-Dot@7=0.6 28.40 41.15 59.12
Sim-Dot@7=0.7 28.40 41.15 59.12
Sim-Dot@7=0.8 28.40 41.15 59.12
Sim-Dot@7=0.9 28.40 41.15 59.12
Sim-Dot@7=0.99 28.40 41.15 59.12

negative Spearman correlation, indicating they are
very different in ranking. We observed the same
phenomenon in datasets across levels and types of
noise.

o 1.0000 0.9958 0.9987 |0.5733 0.5546 Uyt BUpELE Ly RN 0]

NM —JoReLRt: I Molo[JORVRCIE RN Ry SRR R -0.2490-0.2367 -0.2493-0.0028

CE JORclp A Releh (U Wl o0} (0 Roy S PRV IELTIVA-0.2412-0.2289-0.2414-0.0069

Sim-Cos -(USVEERUEYELN LY PARRUVONIRNEYS 0.2697 0.2683 0.2680 [IRLE]

Sim-Dot (UEEEERVUEE N RN A Re) 0.2503 0.2504 0.2467 E{0r/G

Tracln --0.2478-0.2490-0.24120.2697 0.2503 pMUOURRTAWREL YNNI E)

IF --0.2354-0.2367-0.2289/0.2683 0.2504 [0RL:xWanNe[o[JoRVR= It Z 0 R (0]0)]

GD --0.2479-0.2493-0.2414/0.2680 0.2467 [AZyENeRcll-Z R[Ny -l0y)

(clopVNv[ol kRN lopt:RR[3] 0.4943 0.5076 0.7745 0.8005 0.7907 1.0000

SC -
NM -
CE -
IF
GD
GC

" = <
o I3 S
o [=} §
£ £ =
[} [}

(a) Spearman correlation of methods on Snippets with
random noise 20%.

(b) Distribution of Lo-norm (||¢||2) of features

1e6

| __j.....ull““'ll.._, . [[[[][TIEP
(c) Distribution of similarity (d) Distribution of similarity
of <¢(i)7 ¢(j)> of (6(D) ()

e [1211¢()]2

Figure 3: Visualization of (a) Spearman correlation, (b)
the Lo-norm of noisy data points (presented by blue
bars) and normal data points (presented by red bars).
Using normalization (Cosine; (d)) enables the differenti-
ation of the similarity distribution, therefore, enhancing
detection accuracy compared to the unnormalized ap-
proach (Dot; (c)).

10

1.0 1.0 1.0
—e— Sim-Dot
091 091 0.9 Fo=_Sim-Cos
> —&— GC
<
9 —&— GD
© 08 0.8 4 0.8 t B
3 —&— Tracin
O 071 0.7 0.7 — sC
< —#— NM
S 0.6 1 0.6 4 0.6 < —#— CE
e} 3 1
O 054 — Sim-Dot 0.54 —— Sim-Dot 0.5
B —+— Sim-Cos —+— Sim-Cos
) —— GC —— GC
.4 .4 .4
0% o e %41 e 0
S — F — IF
= 0379 4 Tracin 0379 4 Tracin 0.3
w —— SC —— SC
021 —— NM 021 —— NM 0.2 1
—— CE —+— CE
01— - - r r : . - : — 0.11— - . . - - — 011 - - - - - r - .
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
(a) Random noise 5% (b) Ambiguity noise 5% (c) Concentrated noise 5%
1.0 1.0 1.0
0.9 4 0.9 0.9
>
O
© 0.8 0.8 4 0.8
—_
3
O 071 0.7 t 0.7
<<
< 0.6 0.6 0.6
=
) "
O o554 —*— Sim-Dot 0.54 —*— Sim-Dot 0.5 —
3 ~—e— Sim-Cos —e— Sim-Cos ~—e— Sim-Cos
4 —— GC —— GC —A— GC
Q% e 041 o oD 04 — GD
S — IF -+ IF — IF
= 037 _a— Tracin 0371 _a— Tracin 03 —A— Tracln
w —— SC —— SC —#— SC
021 —— NM 021 —— NM 0.2 —*— NM
—#— CE —#— CE —— CE
0.1 0.1 0.1
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
(a) Random noise 10% (b) Ambiguity noise 10% (c) Concentrated noise 10%
1.0 T 1.0 1.0
0.9 4 d 0.9 0.9 %
>
9
© 08 0.8 4 0.8
=1 ™1 —
S 071 0.7 074 "1
< 1
< 0.6 0.6 0.6
h=t
O 054 — Sim-Dot 0.54 —*— Sim-Dot 0.5 —e— Sim-Dot
3 —=— Sim-Cos —=— Sim-Cos —=— Sim-Cos
80_4_+Gc 0.4] ™ GC 0.4 —h— GC
—&— GD —&— GD —— GD
S i —— IF —— IF
= 037 4 Tracin 037 4 Tracin 03 —&— Tracln
w —#— SC —#— SC —— SC
02+ —— NM 0279 —— NM 0.2 —— NM
~+— CE ~+— CE ~#— CE
0.1 0.1 0.1
12 6 7 8 9 10 9 10 1 2 3 4 5 6 7 8 9 10

3 4 5
(a) Random noise 20%

2 3 4 5 6 7 8
(b) Ambiguity noise 20%

(c) Concentrated noise 20%

Figure 4: Detection accuracy of methods measured on Snippets with different levels of noise.

Error Detection Accuracy Error Detection Accuracy

Error Detection Accuracy

1.0 1.0 1.0
0.91 0.9 4 0.9
0.8 0.8 0.8
0.7 0.7 4 0.7
0.6 1 0.6 0.6
0.5 4 —— Sim-Dot 0.54 —— Sim-Dot 0.5 —
—+— Sim-Cos —+— Sim-Cos —
04 7 GC 044 ™ GC 04 —h—
—&— GD —&— GD —h—
—&— IF —— IF —h—
0379 4 Tracin 0379 4 Tracin 0.3 —
—+— SC —+— SC ——
029 —— NM 024 —— NM 02 ——
—+— CE —#«— CE ——
0.1 T T T T T T T T T T 0.1 T T T T T T T T T T 0.1 T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
(a) Random noise 5% (b) Ambiguity noise 5% (c) Concentrated noise 5%
1.0 1.0 1.0
0.9 0.9 4 0.9
0.8 0.8 0.8
0.7 4 0.7 4 0.7
0.6 1 0.6 4 0.6
0.5 4 —— Sim-Dot 0.5 —— Sim-Dot 0.5 —— Sim-Dot
—e— Sim-Cos —e— Sim-Cos ~—+— Sim-Cos
—A— GC —A— GC —A— GC
04 —&— GD 04 —&— GD 04 —&— GD
—A— IF —A— IF —A— IF
0371 4 Tracin 0371 4 Tracin 031 Tracin
—— SC —a— SC —a— SC
024 —— NM 029 —— NM 029 —— NM
—+— CE —+— CE ~#w— CE
0.1 0.1 0.1
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
(a) Random noise 10% (b) Ambiguity noise 10% (c) Concentrated noise 10%
1.0 1.0
0.91 0.9
081 0.8 :;::zxﬁ
0.7 4 0.7
0.6 1 0.6
0.5 4 —— Sim-Dot —— Sim-Dot 0.5 4 —*— Sim-Dot
—+— Sim-Cos —+— Sim-Cos —e— Sim-Cos
04 6C 04+ 6c 04] 6c
—&— GD —&— GD —&— GD
—A— IF —A— IF —— IF
037 4 Tracin 037 4 Tracin 037 Tracin
—— SC —— SC —a— SC
024 —%— NM 024 —— NM 029 —— NM
—#+— CE - CE —»— CE
0.1 0.1 0.1
1 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
(a) Random noise 20% (b) Ambiguity noise 20% (c) Concentrated noise 20%

Figure 5: Detection accuracy of methods measured on IMDB with different levels of noise.

12

Table 8: Test accuracy on Snippets with 10% noise.

Random noise

Ambiguity noise

Concentrated noise

Method
Removed Rectified Removed Rectified Removed Rectified
Acc. (under noise) 85.43 (+0.00) — 88.24 (+0.00) — 85.08 (+0.00) —
Confidence-W. Entropy ~ 88.07 (+2.64) — 85.04 (-3.20) — 84.56 (-0.52) —
Normalize-Margin 81.75 (-3.68) — 86.09 (-2.15) — 79.73 (-5.35) —
Self-Confidence 84.47 (-0.96) — 87.06 (-1.18) — 82.06 (-3.02) —
Influence Function 90.04 (+4.61) — 85.92 (-2.32) — 81.36 (-3.72) —
Gradient-Cosine 82.94 (-2.49) — 81.18 (-7.06) — 80.48 (-4.60) —
Gradient-Dot 86.01 (+0.58) — 85.13 (-3.11) — 83.29 (-1.79) —
Tracln 85.74 (+0.31) — 86.88 (-1.36) — 77.98 (-7.10) —
Sim-Cos 79.73 (-5.70) 87.85(+2.42) 85.48 (-2.76) 85.57 (-2.67) 81.58 (-3.23) 82.06 (-3.02)
Sim-Dot 88.29 (+2.86) 87.32(+1.89) 84.34(-3.90) 86.58 (-1.66) 81.62 (-3.46) 80.83 (-4.25)

Table 9: Test accuracy

on Snippets with 5% noise.

Random noise

Ambiguity noise

Concentrated noise

Method
Removed Rectified Removed Rectified Removed Rectified
Acc. (under noise) 87.14 (+0.00) — 87.36 (+0.00) — 87.93 (+0.00) —
Confidence-W. Entropy ~ 84.86 (-2.28) — 86.57 (-0.79) — 87.80 (-0.13) —
Normalize-Margin 84.65 (-2.49) — 84.82 (-2.54) — 83.77 (-4.16) —
Self-Confidence 85.35 (-1.79) — 83.99 (-3.37) — 86.09 (-1.84) —
Influence Function 85.30 (-1.84) — 86.00 (-1.36) — 85.30 (-2.63) —
Gradient-Cosine 85.43 (-1.71) — 85.13 (-2.23) — 79.51 (-8.42) —
Gradient-Dot 84.56 (-2.58) — 89.21 (+1.85) — 87.06 (-0.87) —
Tracln 84.65 (-2.49) — 87.71 (+0.35) — 81.88 (-6.05) —
Sim-Cos 86.45 (-0.69) 85.17(-1.97) 87.10(-0.26) 85.48 (-1.88) 85.39 (-2.54) 87.19 (-0.74)
Sim-Dot 87.15 (+0.01) 87.06 (-0.08) 83.37(-3.99) 84.34(-3.02) 84.12(-3.81) 79.82(-8.11)
Table 10: Test accuracy on IMDB with 20% noise.
Method Random noise Ambiguity noise Concentrated noise
Removed Rectified Removed Rectified Removed Rectified

Acc. (under noise) 89.92 — 89.36 — 85.98 —
Confidence-W. Entropy ~ 91.00 (+1.08) — 90.73 (+1.37) — 86.66 (+0.68) —
Normalize-Margin 91.00 (+1.08) — 90.73 (+1.37) — 86.66 (+0.68) —
Self-Confidence 91.00 (+1.08) — 90.73 (+1.37) — 86.66 (+0.68) —
Influence Function 90.95 (+1.03) — 90.51 (+1.15) — 87.09 (+1.11) —
Gradient-Cosine 90.59 (+0.67) — 90.93 (+1.57) — 86.78 (+0.80) —
Gradient-Dot 90.43 (+0.51) — 89.45 (+0.09) — 82.87 (-3.20) —
Tracln 90.19 (+0.27) — 91.09 (+1.73) — 82.87 (-3.20) —
Sim-Cos 90.70 (+0.78) 88.73 (-1.19) 90.78 (+1.42) 90.83 (+1.47) 87.76 (+1.78) 84.73 (-1.25)
Sim-Dot 91.49 (+1.57) 90.46 (+0.54) 91.58 (+2.22) 90.13 (+0.77) 87.25(+1.27) 87.46 (+1.48)

13

Table 11: Test accuracy on IMDB with 10% noise.

Random noise

Ambiguity noise

Concentrated noise

Method
Removed Rectified Removed Rectified Removed Rectified
Acc. (under noise) 91.76 (+0.00) — 91.68 (+0.00) — 89.41 (+0.00) —
Confidence-W. Entropy 91.79 (+0.03) — 92.48 (+0.20) — 90.95 (+1.54) —
Normalize-Margin 91.79 (+0.03) — 92.48 (+0.20) — 90.95 (+1.54) —
Self-Confidence 91.79 (+0.03) — 92.48 (+0.20) — 90.95 (+1.54) —
Influence Function 91.65 (-0.11) — 90.97 (-0.71) — 86.26 (-3.15) —
Gradient-Cosine 91.72 (-0.04) — 91.29 (-0.39) — 88.05 (-1.36) —
Gradient-Dot 90.81 (-0.95) — 92.10 (+0.42) — 88.15 (-1.26) —
Tracln 91.75 (-0.01) — 91.66 (-0.02) — 88.86 (-0.55) —
Sim-Cos 91.12 (-0.64) 91.98 (+0.22) 92.52 (+0.84) 92.17 (+0.49) 90.15 (+0.74) 89.20 (-0.21)
Sim-Dot 91.38 (-0.38) 91.51 (-0.25) 91.52(-0.16) 91.61 (-0.07) 89.78 (+0.37) 88.37 (-1.04)

Table 12: Test accuracy on IMDB with 5% noise.

Random noise

Ambiguity noise

Concentrated noise

Method
Removed Rectified Removed Rectified Removed Rectified
Acc. (under noise) 91.67 (+0.00) — 92.07 (+0.00) — 91.52 (+0.00) —
Confidence-W. Entropy ~ 92.35 (+0.68) — 92.58 (+0.51) — 91.94 (+0.42) —
Normalize-Margin 92.35 (+0.68) — 92.58 (+0.51) — 91.94 (+0.42) —
Self-Confidence 92.35 (+0.68) — 92.58 (+0.51) — 91.94 (+0.42) —
Influence Function 92.55 (+0.88) — 91.76 (-0.31) — 90.77 (-0.75) —
Gradient-Cosine 92.46 (+0.79) — 90.88 (-1.19) — 89.78 (-1.74) —
Gradient-Dot 91.79 (+0.12) — 92.58 (+0.51) — 90.32 (-1.20) —
Tracln 92.62 (+0.95) — 91.97 (-0.10) — 91.45 (-0.07) —
Sim-Cos 92.10 (+0.43) 92.10 (+0.43) 93.09 (+1.02) 92.50 (+0.43) 92.11 (+0.59) 91.74 (+0.22)
Sim-Dot 92.69 (+1.02) 92.06 (+0.39) 91.63 (-0.44) 91.09 (-0.98) 91.59 (+0.07) 90.96 (-0.56)

14

