
On E%ects of Steering Latent Representation for 
Large Language Model Unlearning

Huu-Tien Dang     Tin Pham     Hoang Thanh-Tung     Naoya Inoue

AAAI 2025



18

LLM Unlearning 

● Remove or suppress specific knowledge from a pretrained LLMs,

while retaining their other knowledge

● Inputs:
○ LLM parameter: 𝜃

○ Forget set (sentences): 𝐷!"#$%& (e.g., private sensitive information)

○ Retain set (sentences): 𝐷#%&'() (e.g., Wikipedia)

● Goal:
○ Update 𝜃 so that:

○ Acc.(Questions about 𝐷!"#$%&) ↓ (e.g., What is Naoya Inoue’s home address? → ABC)

○ Acc.(Questions about 𝐷#%&'()) → (e.g., Where is the capital of Japan? → Tokyo)
2
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Forget token representation (repr)
from the updated LLM

Retain token repr
from the updated LLM

Retain token repr
from the frozen original LLM

A predefined random unit vector: 

RMU: Representation Misdirection for Unlearning
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Hyperparameter

Hyperparameter
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Issues in RMU: hyperparameter tuning is hard and costly

● RMU is empirically shown to be eAective for unlearning and

robust against knowledge recovery attacks

● However: Hyperparameters 𝑐, 𝑙 need careful calibration,

but there is no principled way to determine 𝑐, 𝑙
○ Needs grid search over both 𝑙 and 𝑐 ... but it is computationally expensive!

4
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Demo: 𝑐 needs sweetspot

5

Figure 3: Average accuracy of WMDP (Biology and Cyber)
(left) and MMLU with different coefficient c (right).

compared to the RMU model. In contrast, the RMU model
demonstrates a more concentrated and approximately nor-
mal distribution of MaxLogit values. The peak of the RMU
model’s MaxLogit distribution is shifted towards lower val-
ues relative to the base model. This indicates that the RMU
model tends to assign lower confidence scores to the gener-
ated tokens. Overall, the RMU model’s MaxLogit distribu-
tion exhibits lower compared to the base model.

4.2 The Effect of the Coefficient c
On accuracy. We analyze the impact of c for forgotten
knowledge and retained knowledge, using WMDP (Li et al.
2024b) and MMLU (Hendrycks et al. 2021). See Section 6
for the full experiment setting. Fig. 3a shows: (i) a clear
positive correlation between the drop-in-accuracy rate and
the value of c, i.e. higher c makes the accuracy decrease
faster. (ii) A larger value of c tends to make a more drop-
in-accuracy on WMDP. (iii) However, a larger c comes with
a caveat in a significant drop in general performance on
MMLU (Fig. 3b).

On alignment between u and h(l). We compute
cos

�
u, h(l)

�
scores of pairs of u and h(l)(xF ) for all xF in

on WMDP-Biology and WMDP-Cyber forget datasets and
plot the cos

�
u, h(l)

�
score distribution shown in Fig. 2(e)-

(h). We observed that there is a clear positive correlation
between cos

�
u, h(l)

�
scores and the coefficient c. As c in-

creases, the distribution of cos
�
u, h(l)

�
scores shifts towards

higher values and are almost distributed with a peak at 1.0
(Fig. 2(g)-(h)). This verify our analysis in Section 3.2.

4.3 The Effect of Layers on Unlearning

Figure 4: `2-norm of forget-sample representation.

Algorithm 1: Adaptive RMU pseudocode
Require:

1: Dforget: a forget dataset.
2: Dretain: a retain dataset.
3: f✓frozen : a frozen model.
4: f✓unlearn : an update model.
5: ↵: a retain weight.
6: l: an unlearn layer.
7: �: a scaling factor.
8: T : number of gradient update steps.

Ensure: Return the unlearned model f✓unlearn .
9: Sample a random unit vector u ⇠ U(0, 1)

10: for step t 2 [1...T ] : xF 2 Dforget, xR 2 Dretain do
11: Get the representations of xF and xR from the frozen

and update model.
12: Compute the adaptive loss Ladaptive by Eqn. 24.
13: Update ✓unlearn w.r.t rLadap using gradient descent.
14: t = t+ 1
15: end for
16: return f✓unlearn

We investigate the effect of unlearn layers on accuracy and
the representation norm during unlearning. Following origi-
nal work, we change the unlearn layer l from 3 ! 31, fixed
c = 6.5. Fig. 5 shows that RMU is effective for unlearn-
ing within the early layers (3 ! 10), yet exhibits inefficacy
within middle and later layers (11 ! 31). Interestingly, in
Fig. 4, we observed that within early layers, the `2-norm of
forget samples are smaller than the coefficient c. During un-
learning, the representation norm exponentially increases,
approaching c, thereby facilitating the convergence of for-
get loss. Conversely, within middle and later layers, the rep-
resentation norms of forget samples, initially larger than c,
remain unchanged during unlearning, making the forget loss
non-convergence.

5 Adaptive RMU
Inspired by the observations in Section 4.3, we propose
Adaptive RMU, a simple yet effective alternative method
with an adaptive forget loss by scaling the random unit vec-
tor u with an adaptive scaling coefficient �||h(l)

✓frozen(xF )||,
where � 2 R is a scaling factor and ||h(l)

✓frozen(xF )|| is the `2-
norm of forget-sample xF on model f✓frozen . The total loss is
calculated as follows:

Ladaptive = ExF2Dforget ||h
(l)
✓unlearn(xF )� �||h(l)

✓frozen(xF )||u||22| {z }
adaptive forget loss

+ ↵ExR2Dretain ||h
(l)
✓unlearn(xR)� h(l)

✓frozen(xR)||22| {z }
retain loss

(24)

Our Adaptive RMU is shown in Algorithm 1. We note that
Adaptive RMU aims to address the challenge of adaptively
determining the coefficient c in RMU. We acknowledge that
the introduced value � is manually tuned via grid search,
leaving the challenge to not fully resolved. However, we

QA accuracy on
forget set (WMDP)

QA accuracy on
retain set (MMLU)

Training steps Training steps
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Our contributions

● 🎓Theoretical and 🧪empirical analysis of RMU:
1. How does 𝑐 aSect next token token prediction?

2. What is the role and eSect of 𝑐?

3. What is the optimal value of 𝑐 for eSective unlearning across layers?

4. Why is RMU robust against knowledge recovery attacks? (see the paper)

● Propose Adaptive RMU, which dynamically adjusts 𝑐 during unlearning
○ Higher drop-in-accuracy for forget knowledge, retaining general knowledge

○ ESective unlearning for most unlayers without additional computational overhead

○ Still needs grid search, but not over both 𝑙 and 𝑐!

6
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Preliminaries

● Definition 1: Unlearned models & Logits of forget tokens

7

Unembedding 
matrix

Final logits of generated 
forget-tokens

Composition of 
transformer layers

Steered representations at 
layer 

Transformer layers
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Preliminaries

● Assumption 1: A well-unlearned model pushes the representations of 

all forget tokens toward a predefined random vector

8

A predefined coefficient

A predefined random unit vector

Optimization Error
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1) Logits are more randomized given larger 𝑐

9

Varies depending on the specific 
characteristics of sub-networks g, but
a larger c could introduce more 
randomness to the logit?

🎓Theoretically…
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1) Logits are more randomized given larger 𝑐

● Ask LLMs about questions related to forget set

● Distribution of answer confidence (by max logit values of ans. tokens)

● With larger c, RMU-unlearned model generates answer tokens with 

lower confidence → Larger c introduces more randomness to logits

10

🧪Empirically…
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2) Larger 𝑐 aligns forget token reprs more with random vector

● Proposition 2: 𝑐 and                                                        are positively correlated.

11

Jacobian matrix—a linearized at a given input

🎓Theoretically…

A predefined random unit vector Forget token repr at layer 𝑙
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2) Larger 𝑐 aligns forget token reprs more with random vector

● Extract token reprs from forget set

● Compute cosine sim. between them and 𝒖

● Clearly, larger 𝑐 promotes the alignment

12

🧪Empirically…
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3) DiEerent layers/models require diEerent 𝑐

● Define noise sensitivity of layers:

● Later layers are more robust to noise

→ Unlearning with later layer also needs larger 𝑐?
13

Injected Noise

🧪Empirically…
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3) Different layers/models require different 𝑐

● Fix 𝑐 (=6.5) and unlearn with various layers 𝑙

● Observe how L2 norm of each layer’s repr changes

14

6.5

🧪Empirically…

Training steps

Earlier layers can be 
well adjusted to 𝑐𝒖

Later layers cannot 
be adjusted to 𝑐𝒖 
with smaller 𝑐
→ Unlearn fails!
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The findings lead to AdaptiveRMU

● How does 𝑐 aAect next token prediction?
○ RMU tries to push all forget reprs at the intermediate layer toward a random repr

○ This randomness is propagated through layers, causing the reduction in generated 

token confidence

● What is the role and eAect of 𝑐?
○ Higher c leads to more randomness of the output

○ Higher c leads to more alignment between forget reprs and the random vector

● What is the optimal value of 𝑐 for eAective unlearning across layers?
○ Early layers require smaller noise (smaller 𝑐) whereas later layers require larger noise 

(larger 𝑐) to produce the same level of output randomness

15
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Proposed: Adaptive RMU (very simple yet eEective)

16

𝛽| |!!	
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Results: AdaptiveRMU works for most layers!

● Ablation test: Fixed 𝑐 (=6.5) v.s. Adaptive 𝑐

17

Forget set (lower, better) Retain set (higher, better)
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Summary

● Theoretical and empirical analysis of RMU

● Propose to use layer-adaptive 𝑐, which eliminates the need of 

hyperparameter tuning and even improves the unlearning performance

● Code: https://github.com/RebelsNLU-jaist/llm-unlearning

● Contact: Tien (dtienuet@gmail.com) and Naoya (naoya-i@jaist.ac.jp)

● Lab: https://rebelsnlu.super.site/
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