

On Effects of Steering Latent Representation for Large Language Model Unlearning

Huu-Tien Dang Tin Pham Hoang Thanh-Tung Naoya Inoue

LLM Unlearning

- Remove or suppress specific knowledge from a pretrained LLMs, while retaining their other knowledge
- Inputs:
 - LLM parameter: θ
 - Forget set (sentences): D_{forget} (e.g., private sensitive information)
 - \circ Retain set (sentences): D_{retain} (e.g., Wikipedia)
- Goal:
 - Update θ so that:
 - Acc.(Questions about $D_{\text{forget}}) \downarrow$ (e.g., What is Naoya Inoue's home address? \rightarrow ABC)
 - Acc.(Questions about D_{retain}) → (e.g., Where is the capital of Japan? → Tokyo)

RMU: Representation Misdirection for Unlearning

Issues in RMU: hyperparameter tuning is hard and costly

- RMU is empirically shown to be effective for unlearning and robust against knowledge recovery attacks
- **However**: Hyperparameters *c*, *l* need careful calibration, but there is no principled way to determine *c*, *l*
 - \circ Needs grid search over both l and c ... but it is computationally expensive!

Demo: *c* **needs sweetspot**

QA accuracy on forget set (WMDP)

QA accuracy on retain set (MMLU)

Our contributions

- Theoretical and rempirical analysis of RMU:
 - 1. How does *c* affect next token token prediction?
 - 2. What is the role and effect of *c*?
 - 3. What is the optimal value of *c* for effective unlearning across layers?
 - 4. Why is RMU robust against knowledge recovery attacks? (see the paper)
- Propose Adaptive RMU, which dynamically adjusts *c* during unlearning
 - Higher drop-in-accuracy for forget knowledge, retaining general knowledge
 - Effective unlearning for most unlayers without additional computational overhead
 - Still needs grid search, but not over both l and c!

Preliminaries

• **Definition 1**: Unlearned models & Logits of forget tokens

Transformer layers

Preliminaries

• Assumption 1: A well-unlearned model pushes the representations of

all forget tokens toward a predefined random vector

$$h^{(l),\text{steered}}(x_{F,i}) = c \boldsymbol{u} + \boldsymbol{\epsilon},$$
 Optimization Error $\mathcal{N}(\mathbf{0}, \eta \boldsymbol{I})$
A predefined coefficient

Theoretically...

1) Logits are more randomized given larger *c*

Proposition 1. If Assumption 1 holds, by Definition 1, the logit value of forget token $x_{F,n+1}$ generated by unlearned model f^{unlearn} given as $f^{\text{unlearn}}(x_{F,n+1}|x_{F,1:n})$ follows the Normal distribution $\mathcal{N}\left(\mathbf{W}g^{(l:L)}(\mathbf{z}), \eta \mathbf{W} \nabla_{\mathbf{z}} g^{(l:L)}(\mathbf{z})^{\top} \nabla_{\mathbf{z}} g^{(l:L)}(\mathbf{z}) \mathbf{W}^{\top}\right)$, where $\mathbf{z} = c\mathbf{u}$.

Varies depending on the specific characteristics of sub-networks g, but *a larger c could introduce more randomness to the logit?*

Empirically...

1) Logits are more randomized given larger \boldsymbol{c}

- Ask LLMs about questions related to forget set
- Distribution of answer confidence (by max logit values of ans. tokens)

• With larger c, RMU-unlearned model generates answer tokens with lower confidence → Larger c introduces more randomness to logits

Theoretically...

2) Larger c aligns forget token reprs more with random vector

Empirically...

2) Larger c aligns forget token reprs more with random vector

- Extract token reprs from forget set
- Compute cosine sim. between them and *u*

• Clearly, larger *c* promotes the alignment

/ Empirically...

3) Different layers/models require different *c*

• Define noise sensitivity of layers:

• Later layers are more robust to noise

 \rightarrow Unlearning with later layer also needs larger c?

3) Different layers/models require different c

• Fix c (=6.5) and unlearn with various layers l

Empirically...

• Observe how L2 norm of each layer's repr changes

The findings lead to AdaptiveRMU

- How does *c* affect next token prediction?
 - RMU tries to push all forget reprs at the intermediate layer toward a random repr
 - This randomness is propagated through layers, causing the reduction in generated token confidence
- What is the role and effect of *c*?
 - Higher c leads to more randomness of the output
 - Higher c leads to more alignment between forget reprs and the random vector
- What is the optimal value of *c* for effective unlearning across layers?
 - Early layers require smaller noise (smaller *c*) whereas later layers require larger noise (larger *c*) to produce the same level of output randomness

Proposed: Adaptive RMU (very simple yet effective)

R

Results: AdaptiveRMU works for most layers!

• Ablation test: Fixed *c* (=6.5) v.s. Adaptive *c*

Summary

- Theoretical and empirical analysis of RMU
- Propose to use layer-adaptive *c*, which eliminates the need of hyperparameter tuning and even improves the unlearning performance

- Code: https://github.com/RebelsNLU-jaist/llm-unlearning
- Contact: Tien (dtienuet@gmail.com) and Naoya (naoya-i@jaist.ac.jp)
- Lab: https://rebelsnlu.super.site/

